AD-A157 947 ACTORS: A MODEL OF CONCURRENT COMPUTATION IN
DISTRIBUTED SYSTENSCU> MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB G A AGHA JUN 85
F/G 97

UNCLASSIFIED RI-TR-844 N9©O14-80-C-08585 NL

N
[2]
v

-y

2l

A

—a

~loa

o A YR

LUVHD 1531 NOUNIOSY AdDDOWON
SONVONVLS 30 NV3UNE TYNOLLVN

| sl

“

=
1A

ol

\

|-‘l|l
I|I.||Il‘
Inll-l.'
-

= 1z

rERRER R

EEET:

HHHE

0-1

/
\
i

.

-

-
-

oy

.' \0 II "l

PR

H -‘-—\ Is v
' % -ﬁns .-.

ST

» DQ 1) .hl‘-n
s e

R ARS

s)

. 4

I

i- hl .\ -‘_

. \.\

.a- ~.. -\

Vo

26N ¢

p30

N
L
(o))
N
0
T
T
Q
<

Technical Report 844

Actors: A Model

Of Concurrent

Compll:tatiOIl
In Distributed

Systems

Gul A. Agha

......

...........
.........
.....

................

............
o

ANl Al Sl Al Aadl Ayl el el el e b S Y Te

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEF ORE CONPL DN RM
1. REPORT NUMBER 2. G, ACCLSS! RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 8. YYPE OF REPORT & PERIOD COVERED
ACTORS: A MODEL OF CONCURRENT COMPUTATION Technical Report
IN DISTRIBUTED SYSTEMS 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Gul Abdulnabi Agha N00014-80-C-0505
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::22R.AzOE.LKEss:ITT.NPURMOBJEEgsT. TASK
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139
19. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency June 1985
1400 Wilson Blvd 3. NUMBER OF PAGES
Arlington, Virginia 22209 198
' MONITORING AGEN;Y NAME & ADDRESS(if different from Controlling Ollice) 15. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems _
Arlington, Virginia 22217 'ﬁ-.‘%&.ﬁf{ucntowoowcnomc

oot —
16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i{ ditferent frem Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reveree side if necessary and identily by block number)

Distributed Systems Object-oriented Programming
Concurrency Deadlock
\ Programming Languages Semantics of Programs

Processor Architecture Functional Programming
20. ABSTRACT (Continue on reverse side if neceseary and identity by block number)

.~ A foundational model of concurrency is developed in this thesis. We
examine issues in the design of parallel systems and show why the actor
model is suitable for exploiting large-scale parallelism. Concurrency in
actors is constrained only by the avallability of hardware resources and
by the logical dependence inherent in the computation. Unlike dataflow
and functional programming, however, actors are dynamically reconfigurable
and can model shared resources with changing local state. Concurrency is

DD ,"5n% 1473 eoiTion oF 1 nOV 6813 OBsOLETE UNCLASSIFIED
S/N 0:02-014- 6601 |

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

«

. _'
PP M A
L2 T e 4

»
PRV A WY

p :
f 1
L LN

.l
.l .

'.
RPN
[N

el e A e ——— RS Sai St IS I AR A N I S AL L B e S A
L ow W T T e T T s T e T e e T T e T T

" communications are those between actors within a system and actors outside it.

20 spawned in actors using asynchronous message-passing, pipelining, and the
dynamic creation of actors.
The gvtho’

We definesan abstract actor machine and provide a minimal programming
language for it. A more expressive language, which includes higher level
constructs such as delayed and eager evaluation, can be defined in terms of
the primitives. Examples are given to illustrate the ease with which concurrent
data and control structures can be programmed.

To send a communication, an actor must specify the target. Communications
are buffered by the mail system and are eventually delivered. Two different
transition relations are needed to model the evolution of actor systems. The
possibility transition models events from some view-point. It captures the
nondeterminism in the order of delivery of communications. The Subsequent
transition captures fairness arising from the guarantee of delivery. We

provide a denotational semantics for our minimal actor language in terms of the
transition relations.ﬁJ

- Abstraction in actors is achieved by a model in which the only observable

Our model makes no closed-world assumption since communications may be received
from the cutside at any point in time. The model provides for the composition
of independent modules using message-passing between actors that interface the
systems composed with their external environment.

"~ This thesis deals with some central issues in distributed computing.
Specifically, problems of divergence and deadlock are addressed.~ For example,
actors permit dynamic deadlock detection and removal. The problem of divergence
is contained because independent transactions can execute concurrently and
potentially infinite processes are nevertheless'gyai&abIe “for interaction.

S o

o P
,/,/ Al /O;g,._,,-r.efa . (‘///j;/f vk /e KP"?M ”"”"(3
-~ -

. 0’ “ ey
')/_ I . ' d , /.,_.._’

Accesslr: For |

NTIS GRA&I
DTIC TAB O
Unannounced v i
Justificotion

e - ————— |

By . — . 3
Distribution/ : N

Avallabllity Codes -
_ |Avail and/or 3
iDist Special

Ao

Actors : A Model Of

Concurrent Computation

In Distributed Systems

Gul A. Agha

This dissertation was submitted to the University of Michigan in partial
fulfillment of the requirements of the degree of Doctor of Philosophy in
Computer and Communication Science.

[RALS AR AR ML SeBulh (| Ol
[
y

The report describes research done at the Artificial Intelligence Labora-
tory of the Massachusetts Institute of Technology. Support for the labora-
tory’s aritificial intelligence research is provided in part by the the System
Development Foundation and in part by the Advanced Research Projects
Agency of the Department of Defence under Office of Naval Research con-
tract N0014-80-C-0505.

© Gul Agha 1985

A OO

atuve

Ll Wk A~ i €Y

Pl Sl oy

. Ve PN

v

—p—

Y

g

| NS

AR

BN
R R

RS

T

R AR e e AN T

L aiah umrad an g

e

To AN Sentient Life

‘,
.8y

LS

A

g ¢ g T

S -bx.--
- _8 .
- » 4 -

PPN DL

In Memory &f

Satpal
(Bug 1983 - M 1984)

PREFACE

It is generally believed that the next generation of computers will involve
massively parallel architectures. This thesis studies one of the proposed
paradigms for exploiting parallelism, namely the actor model of concurrent
computation. It is our contention that the actor model provides a general
framework in which computation in distributed parallel systems can be
exploited. The scope of this thesis is limited to theoretical aspects of the
model as opposed to any implementation or application issues.

Many observers have noted the computational power that is likely to
become available with the advent of a new generation of computers. This
work makes a small contribution in the direction of realizing technology
which seems just on the horizon. The possibilities that emerge from the
availability of a massive increase in computational power are simply mind
boggling. Unfortunately, humankind has generally lacked the foresight to
use the resources that science has provided in a manner that would be com-
patible with its long-term survival. Somehow we have to develop an ethic
that values compassion rather than consumption, to acquire a reverence for
life itself. Otherwise this work, among others, will be another small step in
the global march towards self-destruction.

The research reported in this thesis was carried out for the most part
at M.I.T., where I have been working with the Message- Passing Semantics
Group. The group is currently implementing the Apiary archstecture for
Open Systems, which is based on the actor model. Much of the develop-
ment of the actor paradigm has been inspired by the work of Carl Hewitt
whose encouragement and constructive criticism has been indispensable to
the development of the ideas in this thesis. Carl Hewitt also read and
commented on drafts of this thesis.

This thesis has been influenced by other work in the area of concur-
rency, most notably that of Robin Milner. Although we have shied away
from using a A-calculus like notation for an actor calculus, the transition
system we develop has a similar flavor. Our preference has been for using a

i

R AN RN NI SR SN L AP S i A R ey i araas g LT T T T T I T I T T N rww e
B T R L e e A N

programming language notation for purposes of overall clarity in expressing

simple programs.

John Holland has provided both intellectual impetus and moral sup-
port over the years; in particular, numerous useful discussions with John
have led to a better perspective on ideas in the field. I am also indebted to

Williain Rounds for numerous suggestions, among them to develop a simple

actor language and to illustrate its flavor by treating a number of commonly

understood examples. My first thorough exposure to object-oriented archi-

tectures was in a course offered by Paul Scott. Conversations with Robin
Milner, Vaughn Pratt, and Joe Stoy have provided critical feedback. Will
Clinger’s thesis interested me in the area of actor semantics. Members
of the Message-Passing Semantics Group at M.1.T. have created an atmo-
sphere which made the work described here possible. In particular, Henry
Lieberman, Carl Manning, Chunka Mui and Thomas Reinhardt provided
helpful comments.

The work described in here was made possible by generous funding from
the System Development Foundation and by the support of the Artificial
Intelligence Laboratory at M.I.T.

Finally, the time during which the ideas in this thesis were developed
was a rather intense time in the lives of my family. Nothing would have
been possible without the patient cooperation of my wonderful wife Jennifer
Cole. It must be added that it was only due to the high spirits maintained
by our son Sachal through most of his short, difficult life that any work at
all could have been done by me.

Gul Agha
Cambridge, Massachusetts
March 1985.

Contents

Preface

Table Of Contents
List Of Figures

1 Introduction

2 General Design Decisions

3.1 Defining an Actor System

e T T
_.. ’ .\. LN -f.(o .
e ;\L'h-n;\--.‘.h .;.AA‘._ O IRN

2.1 The Nature of Computing Elements
2.1.1 Sequential Processes
2.1.2 Functions Transforming Data Values
213 Actors

2.2 Global Synchrony and Asynchrony

2.3 Interaction Between Agents

o 2.3.1 Shared Variables
::: 232 Communication.
- 2.3.3 The Need for Buffering
,:'_: 2.4 Nondeterminism and Fairmness
E 2.4.1 The Guarantce of Delivery

- 2.4.2 Fairness and the Mail System
- 2.5 Reconfigurability and Extensibility
2 251 AResource Manager
2.5.2 The Dynamic Allocation of Resources

3 Computation In Actor Systems

.....

iii

viii

...................

311 Tasks 33

3.1.2 The Behaviorof an Actor 36

3.2 Programming With Actors 43
3.2.1 The Basic Constructs 44

322 Examples 51

3.3 Minimal Actor Langnages 58
3.3.1 A Simple Actor Language 59

332 Act e 63

4 A More Expressive Language 66
4.1 Several Incoming Communications 67
4.1.1 A Static Topology 67

4.1.2 A Dynamic Topology 70

42 Imsensitive Actors., 75
4.3 Sequential Composition 81
4.4 Delayed and Eager Evaluation. 84
44.1 Primitive Actors 85

4.4.2 Delayed Evaluation. 87

4.4.3 Representing Infinite Structures. 89

444 EagerEvaluation 95

5 A Model For Actor Systems 98
5.1 Describing Actor Systems 100
5.1.1 Configurations 100

5.1.2 Requirements for a Transition Relation 102

5.2 Initial Configurations 103
5.2.1 Formalizing Actor Behaviors 104

5.2.2 The Mecaning of Behavior Definitions 108

5.2.3 Mapping Actor Programs 115

5.3 Transitions Between Configurations 117
5.3.1 Possible Transitions 119

5.3.2 Subsequent Tramsitions 122

6 Concurrency Issues 127
6.1 Problems in Distributed Computing 128
6.1.1 Divergencettt 128

6.1.2 Deadlockc...... 132

vi
N T A e R e T e e e T

6.1.3 Mutual Exclusien.
6.2 Graphic Representations
6.2.1 Streamsttt
6.22 MessageChannels
7 Abstraction And Compositionality
7.1 Abstraction
711 Atomicity o e
7.1.2 Nesting Transactions
7.2 Compositionality
721 ActorsandPorts
7.2.2 Encapsulationin Actors
7.2.3 Composition Using Message-Passing
7.2.4 Rules for Composition
7.3 The Brock-Ackerman Anomaly
7.4 Observation Equivalence

8 Conclusions
A Asynchronous Communication Trees

References

TR

137 N
138 N
138 R
140 X
144

145

146

148

150

151 g
152)
154 =]
155 -4
161

166 1
172 2

fa—y
-3
(-]
1.

revcre g
NOMMEAL
PEPIY

A A

S
2
-

List of Figures

21
2.2
23
24

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4

7.1
7.2
73

Al
A2
Al
A4

An indeterminate applicative program 12
History sensttive functions 13
A synchronizing mechanism, 16

A static graph linking the resource-manager to two devices. 28

An abstract representation of an actor 38
An abstract representation of transition. 39
Actor event diagrams 42
A factorial computation 56
A fized topology for a two input function. 69
Dynamically accepted tnput 71
Implementing call expresstons 73
Insensitive aclors i 78
Eager evaluation, 96
Aperpetualloop. 130
Dining Phslosophers., 133
Streams and replacement tn actors 140
Commaunication channels 142
Synchronous composition.. 150
Encapsulation tn actor systems 153
The Brock-Ackerman anomaly. 165
A typical Asynchronous Communication Tree 178
Possible nondeterministic transitions. 182
A new receptionist definstion. 183
Acceptance of a communication by an external actor. 183

viii

[SRR A
LD e e
PS W S PR S

! B A

I3

Lt ndnd

'-_I PSR
.“j»... ..

A

R I B B F e,
AL ‘;'l,h!f';'.l' y

e b - & - » - - VLY LY LT, T W, v,
fe 7 I E N MR MR F A B P I B . o DR A ST IO A S el A S0 & o Sust A St AalCh AT AL L I ..

PR

a's.a s8-8 18

: Chapter 1

Introduction ;:

ot

’ o3
- The purpose of any language is to communicate; that of a programming :\‘
language is to communicate to a computer actions it ought to perform. ‘
There are two different sorts of objectives one can.emphasize in the design
. of a programming language: efficiency in execution, and ezpressiveness. E:
By “efficiency,” we refer here only to the speed with which the actions E:
. implied in a program can be carried out by the computer. In a precise M
sense, the most efficient programmming language would be one that literally X
told the computer what actions to carry out; in other words, a machine '
] language.! Expressiveness refers to the ease with which an program can :::
p; be understood and shown to behave correctly. A programming language is .
2 expressive to the extent that it can be used to specify reasonable behaviors
.:' in the simplest possible terms.
1Of course, every kind of processor has its own machine language. Some of these lan-
s guages may be “inherently” more efficient than others. :
1 o
% 3
= Ny
- N
- N
5.*‘.5*:-_'.?*:;;-T;'-T:;‘r_“:;'iz;:i'-:‘\:;f-;f-;;- e I R SR Al i

[SEN

P)
Sttt

TN

B N

A AN,

CHAPTER 1. INTRODUCTION 2

A programming language that maximized efficiency would not necessar-
ily lead to the specification of programs with the best performance. This is
simply because the programmer may end up spending more time figuring
out how to express rather than what to express. The best gains in per-
formance are to be achieved by discovering less computationally complex
methods of achieving the same result.

By and large, the goal of introducing new programming languages has
been to make it simpler to express more complex behavior. Historically,
the class of actions computers were first expected to carry out was that of
computing well-defined mathematical functions. However, such computa-
tions are no longer the only tasks a modern computer performs. In fact, the
storage of information, sorting and searching through such information, and
even exploration of an imprecisely defined domain in real-time are emerg-
ing as significant applications. For example, computerized databases, such
as the records maintained by a state Motor Vehicle Bureau, and artificial
intelligence applications, such as computerized vehicles pioneering the nav-
igation of Martian surface, are common uses of the computer. This more
general use of computer programs has, in and of itself, important conse-
quences for the class of behaviors we are interested in expressing.

Although newer programming languages have generally favored con-
siderations of expressiveness over those of efficiency, the ability to solve
complex problems by means of the computer has nevertheless increased.
This remarkable trend has been achieved by creating faster and bigger pro-

cessors. However, there is now good reason to believe that we may have

A Al R A CT S ST S et i A I B e i A BN

................

MNPORICr Tl Aoy

CHAPTER 1. INTRODUCTION 3

approached the point of diminishing returns in terms of the size and speed
of the individual processor. Already, sinaller processors would be far more
cost-effective, if we could use large numbers of them cooperatively. In par-
ticular, this implies being able to use them in parallel.

This brings us to the central topic of consideration in this thesis; namely,
the development of a suitable language for concurrency. By concurrency
we mean the potentially parallel ex;:cution of desired actions. Actually,
concurrency by itself is not the real issue; after all concurrency has been
exploited for a long time in the software revolution caused by time-sharing.
The key difference between the now classic problem of operating systems,
and our desire to exploit concurrency, is that in the former there is little
interaction between the various “jobs” or “processes” that are executed

concurrently. Indeed, the correctness of an operating system is dependent

:.'- on making sure that none of the numerous (user-defined) processes affect .
each other. '1
h Our problem is quite the reverse: we wish to have a number of processes 3
9 work together in a meaningful manner. This doesn’t really imply that there R

are no important lessons to be learned from operating system theory. For

L A)
A AT

example, notice that we switched from talking about “processors” to talking
. in terms of “processes”. A processor is a physical machine while a process
is an abstract computation. From operating systems, we know that we may
improve over-all performance of a processor by executing several processes
concurrently instead of sequentially. How the processors are utilized is an

issue for the underlying network archstecture supporting the language. Our

o Fa W T T e

- 2 S
LI N IR

-

s

LAy CH
AN

“..; RS A

AICUAR AN
BN
s.

DA "l 0 o o I N 4 D IRNCIN I S R P A A A YR o D NS R A

CHAPTER 1. INTRODUCTION 4

interest is in a model of concurrency that exploits concurrently executed
processes without assuming anything about their concrete realization. The
processes may be distributed over a network of processors which can be used
in parallel; however, if our programming language did not support concur-
rency, such a distributed architecture would not result in any improvement
in performance over a single processor.

Actually, we are not so much concerned with a particular programming
language, but rather, with the meta-linguistic issues behind the constructs
of a concurrent language. The operational semantics of a language defines
an instruction set for computation on an abstract machine. (More precisely,
in case of the actor model, a system of machines). We are interested in the
characteristics of the underlying models of computation. Specifically, we
will examine the issues of expressiveness and efficiency in the context of
concurrent computation.

There are some intrinsic reasons for a theory of concurrency as well. One
of these is the relevance of concurrency to an understanding of intelligent
systems and communities. In particular, natural systems that appear to
learn or adapt are all intrinsically parallel, and in fact quite massively so:
the brain of animals, ecological communities, social organizations whether
these are of human or non-human animals, are all examples of distributed
systems that exploit concurrency. In fact, the genetic algorithm which is
the foundation for adaptation and natural selection is itself intrinsically
parallel [Holland 75]. The success of these mechanisms is sufficient grounds

to interest one in the study of the implications of concurrent processing.

T SR

L) “»

ZCTRR X NN Y SRR
- »

-

- .
W L AP

1.1

)
.,

'-'\‘

) ":’l" -',' .".

*

P, ." “ * e v w_o

CHAPTER 1. INTRODUCTION 5
The rest of this chapter gives an overview of the thesis. The next chap-
ter reviews the general design decisions that must be made in any model .
of concurrent computation. In Chapter 3, we describe the behavior of an -
actor and define a simple actor language which is used to show some spe- }'
cific examples of actors. In the following chapter, we then define several -
higher level constructs which make the actor language more expressive, and <
"
provide a mechanism for abstraction in actor systems. These constructs are .
definable in terms of the primitive actor constructs and are not considered
as part of the actor formalism. Chapter 4 also defines an expressional lan-
guage, and discusses different strategies for the evaluation of expressions. !,'
Chapter 5 defines an operational semantics for actors by specifying a :j
transition relation on configurations of actor systems. The guarantee of ::'_
mail delivery is formalized by defining a second transition system which "
expresses this property. We take the primitive constructs of an actor lan- .
guage and show how one can provide these an with operational definition. fi:
In chapter 6, we are concerned with issues raised in related models. i
There are some significant difficulties in exploiting concurrency: Distributed
.:_‘_'_ systems often exhibit pathological behavior such as divergence and dead- ::
E:}' lock. The actor model addresses these problems at a variety of levels. 2
E Divergence can be a useful property because of the guarantee of delivery;
deadlock in a strict sense does not exist in an actor system. Besides, the
’j:j asynchronous, buffered nature of communication in actors provides mech-
)
™ anisms to detect deadlock in a semantic sense of the term. Chapter 6 also o
e explores the relation between some aspects of dataflow and actors; in par- -
- o
WA Y
X :
\. .
‘e
o o
I‘. \.
Od \.
N
- N
¥ N

..............
...............................
..........

CHAPTER 1. INTRODUCTION 6

ticular, the similarity between replacement in actors and what has been
claimed to be the “side-eflect free” nature of computation in both systems.
Chapter 7 tackles the issue of abstraction and compositionality in actor i
systems. In particular, we discuss the nature of open systems and relate it
to the insufficiency of the history relation observed in [Brock and Acker-
man 77). The right level of abstraction would permit us to treat equivalent
systems as semantically identical and yet differentiate between systems that ‘
are ufnequal. We discuss the nature of composition in actors and show how .._
we can model composition based on message-passing. »
The final chapter summarizes some of the implications of the work in -
this thesis. The Appendix uses tools from Milner’s work to define an ab- \
stract representation for actor systems in terms of what are called Asyn-
chronous Communication Trees. This representation provides a suitable .
way of visualizing computations in actors. ‘
Contributions '
o
The specific contributions of this thesis are summarized below. This thesis :‘_;:
provides: ‘E
Y
e A critical overview of the various proposed models of concurrency. ;’;
e A simple outline of the actor model and the specification of minimal R
primitive constructs for actor languages. :;:Z_
e A transition system for actor systems and a structured operational
semantics for an actor language. \
:
L
;.:.
A S AR S SR
G N A S N N R NIRRT e T N e A AT

-'. T T e R T S Rl AR o A St S Tadh 30 0 ne i S R A Bae g Siacaty sub Al AR Ad A fafl Gad Sd Bd b a Ak oS -

() '[-' e
PRy ‘01 2.

S .
27

CHAPTER 1. INTRODUCTION 7

4.1

e A paradigm for addressing problems in distributed computing which

2
o .

is suitable for computation in open systems.

e A model to support compositionality and abstraction from irrelevant

detail.

PR ey

. e v

..........................

N L
-~

: Z-
.

<

.

N .
[]

Chapter 2

’
PN -

: General Design Decisions :

» o)
*_:: Several radically different models of concurrent computation have been pro- t
e 9
= posed. In this chapter, we will review the concepts underlying each of -
. the proposed models. QOur interest is in comparing and contrasting their
;::; primitives with a view towards determining their generality. Of particular by
& 7
3 concern to us is the relative ease with which massively parallel architec- .

- tures can be exploited. The design decisions fundamental to any model of
concurrent computation include: r

e the nature of the computing elements

e global synchrony versus asynchronous elements

e the mode of interaction between computing elements :_Z:

o degree of fairness

e reconfigurability and extensibility ;E:

u::‘

............
......................

..............
............................

..... L Tty
LS A A R A AP

I AP A
R G V! A ST AT RIS SRR S, A Ay

CHAPTER 2. GENERAL DESIGN DECISIONS 9

This list is by no means exhaustive but represents the aspects we think
are the most significant. There are other issues, such as the linguistic issues
in the specification of a language based on each of the models, but we will
ignore such details in our present discussion. We discuss each of the design

issues in the sections that follow.

2.1 The Nature of Computing Elements

The elements performing computations are, in an abstract denotational
sense, some kind of a function. However, the domain and range of the
functions defiring the behavior of the elements is quite different in each
of the models. Ignoring some significant details, we identify three distinct

kinds of computational elements:

1. Sequential Processes.
2. Functions transforming data values.

3. Actors.

2.1.1 Sequential Processes

The operational notion of a sequential process is that it performs a sequence
of transformations on states, where a state is a map from locations to
values such as integers. In addition, the transformations may depend on

certain “inputs” and produce “outputs.” It is this latter aspect which makes
P

the denotational semantics of systems of sequential process more difficult;

PR

JOEAA

:.. .o:':.,_;.. ’:"' 1 .'..';-"'.. '.-".-."..'.

R M
OF DT RT O W -

CHAPTER 2. GENERAL DESIGN DECISIONS 10

in particular, explicit consideration of the possibility of deadlock (when a
process is waiting for input that never arrives) is required [Brookes 83].
Sequential processes are themselves, predictably, sequential in nature, but
can execute in parallel with each other.

In a sense, sequential processes are inspired by algol-like procedures in
sequential programming. Examples of systems based on the concept of se-
quential processes include Concurrent Pascal [Brinch Hansen 77], Commu-
nicating Sequential Processes [Hoare 77|, and the Shared Variables model

[Lynch and Fischer 81].

2.1.2 Functions Transforming Data Values

A second kind of computational element is a function which acts directly
on data, without the benefit, or burden, of a store: Such functional models
are derived from the A-calculus based languages such as Pure Lisp [Mec-
Carthy 59]. Examples of concurrent systems using some variant of the
functional model include dataflow [Agerwala and Arvind 82] and networks
of parallel processes [Kahn and MacQueen 77). In dataflow architectures, a
streamn of (data) values pass through functional agents {Weng 75]. The con-
currency in the system is a result of being able to evaluate the arguments
to the functions in parallel.

Perhaps the simplest model of systems using functions is an sndeter-
minate applicative system where the call-by-value is used to evaluate the
arguments and the result of the computation is a single value. Computa-

tion in such systems fans sn as arguments are evaluated and passed along.

o e e e .
LAY L% e gt

......

ke T AT P IS0 T S P

. DN A A P

S EL

A

". e
P I

-

..,.'..‘
AR

el

CHAPTER 2. GENERAL DESIGN DECISIONS 11

Fig. 2.1 shows an example of concurrent evaluation in an indeterminate

applicative system.

The functional elements may take several parameters as inputs but,

given the parameters, can output only a single value. The same value
may, however, be sent to different computational elements. Unfortunately,
functions are history insensitive [Backus 78]. This can be a problem when
. modeling the behavior of systems that can change their behavior over time. L
For example, consider the behavior of a turnstile with a counter which
records the number of people passing through it. Each time the turnstile is r
) turned, it reports a new number on the counter. Thus its behavior is not ~
simply a function of a “turn” message but sensitive to the prior history of
” the computation. The turnstile problem is essentially equivalent to that of
generating the list of all integers, producing them one at a time in response _
to each message received. ;
:'. This problem is dealt with in some functional systems by feedback, using ":
:-' cyclic structures, as shown in Fig. 2.2 adapted from [Henderson 80]. The
turnstile is represented as a function of two inputs, a “turn” message and "‘
an integer n. Its behavior is to produce the integer n + 1 in response. The
links act as (first-in first-out) channels, buffering the next value transmitted :_
until the function has been evaluated and accepts more input. (The same
: value is sent down all the links at a fork in the diagram.)
2 :
>
: N

. e
. -~ - COFCIRC I
P R L L A N N AR R R SR NP

..........
..................

CHAPTER 2. GENERAL DESIGN DECISIONS 12
: x y z w
;:; | b
;t 8(xy) h(zw)
Az

Figure 2.1: An tndeterminate applicative program. The parameters of the

Junction are evaluated concurrently.

2.1.3 Actors

Actors are computational agents which map each incoming communication

to a 3-tuple consisting of:

1. a finite set of communications sent to other actors;

., PP AR
', ? ',l.’l ‘r '-'i"",',
.

2. a new behavior (which will govern the response to the next commu-

nication processed); and,

3. a finite set of new actors created.

DA G] AN

-

PR R R

CHAPTER 2. GENERAL DESIGN DECISIONS 13

"‘um" ’
n+1
+1 f—p »-
n
—>

Figure 2.2: History sensstive behavior as evaluation of a function with feed-

back.

Several observations are in order here. Firstly, the behavior of an actor
can be history sensstive. Secondly, there is no presumed sequentiality in
the actions an actor performs since, mathematically, each of its actions is
a function of the actor’s behavior and the incoming communication. And
finally, actor creation is part of the computational model and not apart
from it. An early precursor to the development of actors is the concept of
objects in SIMULA [Dahl, et al 70] which represented containment of data
with the operations and procedures on such data in a single object.

Actors are a more powerful computational agent than sequential pro-
cesses or value-transforming functional systems. In other words, it is possi-
ble to define a purely functional system as an actor system, and it is possible
to specify arbitrary sequential processes by a suitable actor system, but it
is not possible to represent an arbitrary actor system as a system of sequen-

tial processes or as a system of value-transforming functions. To see how

v

RASOHIEY i SRNKIINIS S\

e AL

F‘-\ v

r-
.

) ,n"u A

.
e e

A P Nt e i Mt Sl S A Saa e D et M M o i o Mas i P g e

CHAPTER 2. GENERAL DESIGN DECISIONS 14

actors can be used to represent sequential processes or functional programs
is not difficult: both are special cases of the more general actor model. If
the reader is not convinced of this, the machinery developed later in this
thesis should make it clear.

It is easy to see why the converse is true: actors may create other ac-
tors; value-transforming functions, such as the ones used in dateflow can
not create other functions and sequential processes, as in Communicating
Sequential Processes, do not create other sequential processes.! In the se-
quential paradigm of computation, this fact would not be relevant because
the same computation could be represented, mathematically, in a system
without actor creation. But in the context of parallel systems, the degree
to which a computation can be distributed over its lifetime is an important
consideration. Creation of new actors guarantees the ability to abstractly

increase the distributivity of the computation as it evolves.

2.2 Global Synchrony and Asynchrony

The concept of a unique global clock is not meaningful in the context of a
distributed system of self-contained parallel agents. This intuition was first
axiomatized in [Hewitt and Baker 77] and shown to be consistent with other

laws of parallel processing in [Clinger 81]. The reasoning here is analogous

!Sequential processes may activate other scquential processes and multiple activations
are permitted but the topology of the individual process is still static. The difference

between activation and creation is significant in the extent of reconfigurability afforded

by each.

]
L

o
R
ad

I LS LT ALV T LI)

.~ “h . :"-- 2ty ‘L‘A'I IR

e
o

WU Y

R

£ e s
g4 g "

- ‘;' X 3 -

ala

",‘!.‘:ll._‘:l

ey
l'l.l".. .

. a‘.t

WP s s 2 r s

CHAPTER 2. GENERAL DESIGN DECISIONS 15

to that in special relativity: information in each computational agent is
localized within that agent and must be communicated‘before it is known
to any other agent. As long as one assumes that there are limits as to how
fast information may travel from one computational agent to another, the
local states of one agent as recorded by another relative to its own local
states will be different from the observations done the other way round.

We may conclude that, for a distributed system, a unique (linear) global
time is not definable. Instead, each computational agent has a local time
which linearly orders the events as they occur at that agent, or alternately,
orders the local states of that agent. These local orderings of events are
related to each other by the activation ordering. The activation ordering
represents the causal relationships between events happening at different
agents. Thus the global ordering of events is a partial order in which events
occurring at different computational agents are unordered unlecss they are
connected, dircctly or indirectly, because of one or more causal links.

This is not to imply that it is impossible to construct a distributed
system whose behavior is such that the elements of the system can he ah-
stractly construed as acting synchronously. An example of such a system is
Cook’s hardware modification machine [Cook 81]. The hardwarc modifica-
tion machine is a mathematical abstraction useful for studying the problems
of computational complexity in the context of parallelism.

The problern of constructing a synchronously functioning system is es-
sentially one of defining protocols to cope with the fundamental epistemo-

logical limitation in a distributed system. To see how the elements of a

.....
..........

1
b
n

.t

O,

Yy ':'-‘-('u‘ Y %

L

O

’ o
& 0,

s ’o_f-"--,q

... g e, e - P
) "‘,“ :"' s " '.i '{5‘"- .'- '4"'-"':"" "r'l' o8

P L T
" " ‘L,

) * :"::":.'v'.‘:.

f N
QN
,

't’.v
D]

. o o o - . _»
S TN W%
(s 2 0 0 1,00

LR PO/

“t

NS ~

—y ey - Akt ‘Sad ' Ad ed PO gV ard ol
o tan T O e T TR N S T SO ALIMES AVCS ST AR A AL A el et Sad Sl tad S8 Apk S Asichulle KRR A CA S T S8

r- . r- - -

CHAPTER 2. GENERAL DESIGN DECISIONS 16

system can be construed to be synchronous, consider the example shown

in Fig. 2.3.

" .
UL PR

B .
AP P

global
master

Figure 2.3: A synchronizing mechanism: A Global Master controls the ele-

ments of the system.

Assume one element, called the global master, controls when each of
the elements in the system may continue; all elements perform some pre-
determined number of actions, report to the global master and wait for
another “go” message from the global master before proceeding. The global
master knows how many elements there are in the system and waits for each
- of them to report before sending out the next “go” message. Conceptually,

we can think of each of the elements acting synchronously and the system

passing through execution cycles on a “global clock”. We can ignore the

» SPAENTRENANS

.
'
3
hl
‘e
o

CHAPTER 2. GENERAL DESIGN DECISIONS 17

precise arrival order of messages to the global master, because in such a
system the exact order may be irrelevant.

The important point to be made is that any such global synchronization
creates a bottleneck which can be extremely inefficient in the context of a
distributed environment. Every process must wait for the slowest process
to complete its cycle, regardless of whether there is any logical depéndence
of a process on the results of another. Furthermore, it is not altogether
obvious that such global synchrony makes it any easier to write programs
in general. Although systems designed to act synchronously may be useful
in some particular applications, we will deal with the general asynchronous
distributed eﬂvironment; the behavior of the synchronous system can al-
ways be derived as a special case. (See, for example, the discussion in
chapter 4 of mechanisms involving an effectively prioritized exchange of

communications between two actors.)

2.3 Interaction Between Agents

How the elements of a concurrent system affect each other is one of the most
salient features of any model of concurrent computation. The proposed
modes of interaction between the computational elements of a system can

be divided into two different classes:

1. variables common to different agents; and,

2. communication between independent agents.

We take up these two modes of interaction in turn.

CHAPTER 2. GENERAL DESIGN DECISIONS 18

2.3.1 Shared Variables

The basic idea behind the shared variables approach is that the various
processes can read and write to variables common to more than one process.
When one process reads a variable which has been changed by another, its
subsequent behavior is modified. This sort of common variables approach
is taken in [Lynch and Fischer 81].

The shared variables approach does not provide any mechanism for
abstraction and information hiding. For instance, there must be pre-
determined protocols so that one process can determine if another has
written the results it needs into the relevant variables. Perhaps, even more
critical is the fact that this approach does not provide any mechanism for
protecting data against arbitrary and improper operations. An important
software principle is to combine the procedural and declarative information
into well-defined objects so that access to data is controlled and modularity
is promoted in the system. This sort of absolute containment of information
is also an important tool for synchronszing access to scarce resources and
proving freedom from deadlock. In a shared variables model, the program-
mer has the burden of specifying the relevant details to achieve meaningful

interaction.

2.3.2 Communication

Several models of concurrent computation use communication between in-
dependent computational agents. Communication provides a mechaniam

by which each agent retains the integrity of information within it. There

- . L . R O S R S
'.o-"-'-')'.-‘";-°a"~‘.-.-,-_.‘. . T N A AL A T RS

. DR IR Y RS L . e et e e P T e e e et e e
- -"~'.\.\..'..\:1"-‘\"..\-'-' . . .'.'. .o ‘-_','-- ‘.." LR R N P \..' S

", W,

A
PRy

‘-
LY
o
.
MRS

® -
B
e
.\‘
RS
e
."
"o
L4
N
o
Lt
T e
.“
"-.
-'.
te
Vo
S e
S
e
\-

®
R

« 0w 0
. by
2 0 .

7 ‘_('Lf -

r_r
L

[4

]

.......

et e .

CHAPTER 2. GENERAL DESIGN DECISIONS 19

are two possible assumptions about the nature of communication between
independent computational elements; communication can be considered to

be either:

e Synchronous, where the sender and the recetver of a communication

are both ready to communicate; or,

e Asynchronous, where the recesver does not have to be ready to accept

a communication when the sender sends it.

Hoare’s Communicating Sequential Processes and Milner’s Calculus of
Commaunicating Systems assume synchronous communication while the ac-
tor model [Hewitt 77] and dataflow architectures [Ackerman 84] do not.

Let’s examine each assumption and its implications. A concurrent com-
putational environment is meaningful only in the context of a conceptually
distributed system. Intuitively, there can be no action at a distance. This
implies that before a sender can know that the receiver is “free” to ac-
cept a communication, it must send a communication to the receiver, and
vice-versa. Thus one may conclude that any model of synchronous commu-
nication is built-on asynchronous communication.

However, the fact that synchronous communication must be defined
in terms of asynchronous communication does not necessarily imply that
asynchronous communication is itself the right level of abstraction for pro-
gramming. In particular, an argument could be made that synchronous
communication should be provided in any programming language for con-

current computation if it provides a means of writing programs without

a2 T s T aN.FL.w

i 2

el)
" v s w
Y P

o« e 0

CHAPTER 2. GENERAL DESIGN DECISIONS 20

being concerned with detail which may be required in all computation.

The question then becomes if synchrony in communication is helpful as a

/A

universal assumption for a programming language. We examine this issue

Erar - arad AR bt o
‘

below.

2.3.3 The Need for Buffering o

Every communication is of some finite length and takes some finite time
to transmit. During the time that one communication is being sent, some
computational agent may try to send another communication to the agent o
receiving the first communication. Certainly, one would not want to inter-
leave the arbitrary bits of one communication with those of another! In
some sense, we wish to preserve the atomicity of the communications sent.

A solution to this problem is to provide a “secretary” to each agent which

in effect tells all other processes that the agent is “busy.”? Essentially, the j:f-_
"
underlying system could provide such a “secretary” in an implementation of o

a model assuming synchronous communication, as in a telephone network.

There is another problem in assuming synchronous communication.

Y

Suppose the sender is transmitting information faster than the receiver A
can accept it. For example, as this thesis is typed in on a terminal, the L..
speed of the typist may at times exceed the rate at which the computer is =
accepting the characters. To get around this problem, one could require :E',.-}
that the typist type only as fast as the edsting process can accept the char- :‘_::'.:
acters. This solution is obviously untenable as it amounts to typing one ~._
2This could be done for instance by simply not responding to an incoming communication. ;:::

=5

‘. -

.

\.:_‘
............. L T T T e AT e T AU SRR Tl
) -' e P PO PR T N T S S A S S T I SR \.b\ - -

e et e e e e e e e e e e e e I A A A L N A R A R T e

,.-—.-

e e e e
R AN
AR

CHAPTER 2. GENERAL DESIGN DECISIONS 21

character at a time and waiting for a response (in fact, the argument would o

.\.
continue to the level of electrons!). The other solution is to provide the o
system with the capability to buffer the segments of a communication. .

Of course, if the underlying system is required to buffer segments of

a communication, it can equally well be required to buffer different com- _
ﬁ munications so that the sender does not have to be “busy waiting” for the 1-sj
9 receiver to accept a communication before it proceeds to do some other pro- o

cessing. Thus buffered asynchronous communication affords us efficiency in

4

execution by pipelining the actions to be performed. Furthermore, syn-

£ A IS

chronous communication can be defined in the framework of asynchronous

s
v 'e
()

3

communication.> The mechanism for doing so is simply “freczing” the

sender until the receiver acknowledges the receipt of a communication [He-

witt and Atkinson 77].

There is yet another significant advantage in buffered asynchronous

. e
o ¢

communication. It may be important for a computational element to com-

vor

municate with itself; in particular, this is the case when an element defines

a recursive computation. Communication with oneself is however impossi-

. N
{‘."n'v'a'r

ble if the recetver must be free when the sender sends a communication:

this situation leads, immediately, to a deadlock because the sender will be

Il

“busy waiting” forever for itself to be free. The problem actually is worse:

3The notion of synchrony as simultaneity is physically unrcalizable. The faslure of &3-
multancity at a distance occurs because whether two clocks are synchronous is itself
dependent on the particular frame of reference in which the observations are carried
out [Feynman, et al 1965]. We assume any notion of synchronous communication is a "

conceptual one. , '

e R N R e e T T et e e e
e e e e e
e Tt W P L .

- w . N e M 2
| Jetanchma i s B IC I I . P T N T VT G R R R R S VR T RTINS

CHAPTER 2. GENERAL DESIGN DECISIONS 22

no mutually recursive structure is possible because of the same reason. Mu-
tual recursion, however, may not be so transparent from the code. There is
no a priors problem with such recursive structures if the communications
are buffered.

Both the dataflow architecture for functional programming [Ackerman 82]
and the apiary architecture for actor systems [Hewitt 80| provide the capa-
bilities to buffer communications from asynchronous computing elements.
However, it is not altogcther obvious how the computational elements to
provide for buffering communications can be defined in a functional lan-
guage (as opposed to simply assumed). Such buffers are readily defined in

actor languages.

2.4 Nondeterminism and Fairness

- Nondeterminism arises quite inevitably in a distributed environment. Con-
ceptually, concurrent computation is meaningful only in the context of a
‘ distributed environment. In any real network of computational agents, one
X can not predict precisely when a communication sent by one agent will ar-

rive at another. This is particularly true when the network is dynamsc and

the underlying architecture is free to improve performance by reconfigur-
ing the virtual computational elements. Therefore, a realistic model must
assume that the arrival order of communications sent is both arbitrary
and entirely unknown. In particular, the use of the arbiter as the hard-

ware element for serialization implies that the arrival order is physically

..........
..
...

.........
.................................

......................................
.................

.............

...............

4

4

A Al Ste s "etelir i Spte i Aety aaipibeptin e Sa LA e A e et iniuBn S ph R A S G

Laars
1]

CHAPTER 2. GENERAL DESIGN DECISIONS 23

indeterminate.

E
:

2.4.1 The Guarantee of Delivery

Given that a communication may be delayed for an arbitrarily long pe-
riod of time, the question arises whether it is reasonable to assume that a
communication sent is always delivered. In a purely physical context, the
finiteness of the universe suggests that a communication sent ought to be
delivered. However, the issue is whether buffering means that the guarantee
of delivery of communications is impossible. There are, realistically, no un-
bounded buffers in the physically realizable universe. This is similar to the
fact that there are no unbounded stacks in the universe, and certainly not
in our processors, and yet we parse recursive control structures in algolic
languages as though there were an infinite stack. The alternate to assuming
unbounded space is that we have to assume some specific finite limit; but
each finite limit leads to a different behavior. There is, however, no general
limit on buffers: the size of any real buffer will be specific to any particular
implementation and its limitations. The point of building a semantic model
is to abstract away from such details inherent in any implementation.

The guarantee of delivery of communications is, by and large, a property
of well-engineered systems that should be modeled because it has significant
consequences. If a system did not eventually deliver a communication it
was buffering, it would have to buffer the communication indcfinitely. The
cost of such storage is obviously undesirable. The guarantee of delivery

does not assume that every communication is “meaningfully” processed.

T

CHAPTER 2. GENERAL DESIGN DECISIONS 24

i AN RN AL ' § A
B
'

1

For example, in the actor model, the processing of communications is de-

T

N pendent on the behavior of individual actors, and there may be classes of
. actors which ignore all communications or indefinitely buffer some com-
munications. In particular, the guarantee of delivery provides one with
mechanisms to reason about concurrent programs so that results analogous
to those established by rcasoning about the total correctness in sequential
programs can be derived; in some cases, the guarantee helps prove termi-

nation properties.

2.4.2 Fairness and the Mail System

Not all algorithms for delivering communications result in a mail system
that guarantees delivery. For instance, a mail system that always delivered

“shorter” communication in its buffer may not deliver all communica-
tions. Consider an agent, in such a system, which sent itself a “short”
communication in response to a “short” communication. If a “long” and
a “short” communication are concurrently sent to this actor, it may never
receive the “long” communication.

The guarantee of delivery is one form of what is called fairness. There

are many other forms of fairness, such as fairness over arbitrary predicates,

- or eztreme fairness [Pnueli 83] where probabilistic considerations are used.
¢ The guarantee of delivery of communications is perhaps the weakest form
? of fairness one can define (although it is not clear to me what sort of formal
F framework one would define to establish this rigorously). The question

: arises if one should assume a stronger form of fairness; for example, that

3

’
‘o

%

SR LA
SNICAA

."'. J PR

* .." (l "l..'.
%0y

.........

CHAPTER 2. GENERAL DESIGN DECISIONS 25

the communications sent are received in an probabilistically random order
regardless of any property they have.

Consider a system that chooses to deliver up to three “short” commu-
nications for every “long” communication it delivers (il the shorter com-
munications are found). Such a system would still satisfy the requirement

of guaranteeing delivery of communications, but would not satisfy some

stronger fairness requirements, for example, t! ¢ requirement that all com-

munications sent have an equal probability of being the next to be delivered.

g On the other hand, it may be very reasonable to have such an underlying
ﬁ mazil system for some applications. We prefer to accept the guarantee of
3

[delivery of communications but not any form of fairness stronger than this

: guarantee. We will study the implications and usefulness of the guarantee
n later in this thesis.
Of course, given the lack of a unique order of events in a distributed

system, what the definitions of stronger forms of fairness really mean is

not altogether obvious. Our initial cognizance in such cases can sometimes

be misleading because our intuitions are better developed for sequential ;f—
processes whose behavior is qualitatively different. In particular, the mail
system is itself distributed and the delivery of communications, even ac-

cording to a given observer, may overlap in time.

1 O

w-r

AT Bil B g

>
A .
. aale

Vo
.
»

(3

CHAPTER 2. GENERAL DESIGN DECISIONS 26

2.5 Reconfigurability and Extensibility

The patterns of communication possible in any system of processes defines
a topology on those processes. Each process (or computational agent) may,
at any given point in its local time, communicate with some set of pro-
cesses. As the computation proceeds, a process may either communicate
only with the same processes it could communicate with at the beginning
of the computation, or it may evolve to communicate with other processes
that it could not communicate with before. In the former case, the inter-
connection topology is said to be static; and in the latter, it is dynamitec.
Any system of processes is somewhat easier to analyze if its intercon-
nection topology is static: the graph representing the connections between
the processes is constant and hence relatively more information about the
system is available at compile-time. Perhaps because of this structural
simplicity in the analysis of static topologies, many models of concurrency
assume that a process can communicate with only the same processes over
its life-time. A static topology, however, has severe limitations in represent-
ing the behavior of real systems. We illustrate these limitations by means

of the following example.

2.5.1 A Resource Manager

Consider the case of a resource-manager for two printing devices. We
may assume for our present purposes that the two devices are identical in

their behavior and therefore interchangeable. One would like this resource-

. s

NEE i
P A e e e e

e
.
.
o
.
LIS
-

.
o
-
=

.
* e
.

CHAPTER 2. GENERAL DESIGN DECISIONS 27

manager to

1. Send the print requests to the first available printing device.

T TS YT Y T WL T T LYt

2. When a print request has been processed, to send a receipt to the user

kS

requesting the printing.

These requirements imply that the resource-manager be able to commu-
nicate with a different device each time. Thus a system where the commu-
nication links were static and communications were sent down these links,

without the resource-manager being able to choose which link ought to be

used, would either send a communication to both the devices or to nei-
ther. This is the situation in a dataflow graph shown in Fig. 2.4. However,
resource-manager should be able to choose where it wants to send a com- w{
munication (depending on which device is free), suggesting that the edges
represent only potential communication channels and not actual ones. The

true links would be dynamically determined. -7

Suppose a system allowed the resource-manager to decide which of the

two printing devices it wanted to communicate, with but relied on syn- s

chronous communication. The use of resources would be inefficient if the .

resource-manager was “busy waiting” for one particular printing device ’_ﬁ

while the other one was idle. To get around this problem, suppose we re- Y

quired the resource-manager to keep a track of which device, if any, was fl;-:

idle and to attempt to communicate only with such a device. In this case, ..1

when a busy device becomes idle, it must inform the resource-manager that ‘_:“-1

it is free. Once again, if the resource-manager is required to specify which 1

e

-.\‘

F'T.]

AN

S

e

4

%

TN N LN N T N N T e S R e T e et e T T e e e e e e T AL
T R A T T N e e T e e e e e e e T e e e
N A e e T T e D S S PO A I I TN

— L S e e rdd Bt S s e _ MM ama en e I Sen S B Bl Sl g Badhafed Yt b 0 AL A S A areh ML sl i atU i auin ad i M- A

-‘--4,,A-..,

o

p CHAPTER 2. GENERAL DESIGN DECISIONS 28

]
s -_]
S

P

[user1 J.

NI W)

e iaitid A d koo

resource

manager -

by

=

dev 1 dev 2 -

e

A

: Figure 2.4: A static graph linking the resource-manager to two devices. }'.:
. n

particular device it will accept input from, and be “busy waiting” to do so, ~
R,

the problem persists as it can not predict which one would be free first. y
Requiring a receipt to the user introduces other complications. For ':-fi
one, the number of users will vary with time. This variation by itself f_::i
creates the need for a dynamic graph on the processes [Brock 83]. For ,’4
another, the maximum number of users need not be constant. In a system :|
that might evolve to include more resources, the addition of the increased -i
- 3

capacity should be graceful and not require the redefinition of the entire -
system. This implies that a solution using a fixed number of communication N
:::“.:

E

.:.\.l

<

.
e

B

i

’

CHAPTER 2. GENERAL DESIGN DECISIONS 29

channels is not very satisfactory in an open systera which is constantly
subject to growth [Hewitt and de Jong 82|. For instance, if we wanted
to add a third printing device, we should not necessarily have to program
another resource-manager , but rather should be able to define a resource-
manager which can incorporate the presence of a new printing device when
sent an appropriate message to that effect.

A system that is not only reconfigurable but ertensible is powerful

ecnough to handle these problems. Reconfigurability is the logical pre-

requisite of extensibility in a system because the ability to gracefully extend

e
P

a system is dependent on the ability to relate the extension to the elements

of the system that are already in existence. An elegant solution to this prob-

Y
.‘1; * * .'
. . LI T .

lem of resource management using an actor systeimn can be found in [Hewitt,

et al 84).

2.5.2 The Dynamic Allocation of Resources

Extensibility has other important consequences. It allows a system to dy-
namically allocate resources to a problem by generating computational
agents in response to the magnitude of a computation required to solve
a problem. The precise magnitude of the problem need not be known in
advance: more agents can be created as the computation proceeds and the
maximal amount of concurrency can be exploited.

For example, consider a “balanced addition” problem, where the ad-

dition has to be performed on a set of real numbers. If the numbers are

-r v -~ v d LT ANE AN AL SN IV AA I L N SO N

Al Wi e gl vl S S . Sl eatl At Indeiatt St Nl AR L AL I I U AN S

CHAPTER 2. GENERAL DESIGN DECISIONS 30

added sequentially,
(..-(((ag + a2) +a3) + a¢) + ... + aa)

then there is a classic problem of “propagation of errors,” discussed in
[von Neumann 58]. The problem occurs because real numbers are imple-
mented using floating-point registers. Computational errors, instead of
being statistically averaged, become fixed as rounding errors move to more

significant bits. It is preferable to add the numbers in pairs,

(---(((81 + a2) + (a3 + ad)) + ((as + ag) + (-..))) + ... + (Ga-1+an)...)

which results in the error being statistically reduced by the “law of large

numbers.”

‘ Addition in pairs is ideal for concurrent computation because it can be
. done using parallel computation in log-time, as opposed to linear time when
, done sequentially. Now if we had a program to carry out this addition in
i pairs, we may like the program to work even if we input a different number
:ji of real numbers each time. Thus we can not define a static network to
[-. deal with this problem [Emden and Filho 82]. Addition in pairs is easily

accomplished in an actor system by creating other actors, called customers,
and doing the evaluations concurrently. Such concurrency is the default in
actor languages.

Reconfigurability in actor systems is obtained using the masl system
abstraction. Each actor has a mail address which may be freely commu-

nicated to other actors, thus changing the interconnection network of the

CHAPTER 2. GENERAL DISSIGN DECISIONS 31

system of actors as it evolves. We will discuss the specific mechanisms later

in this thesis.

A]
.

.
dsdhedndencdaedih

Lot AR
“"

IR
"

e
AR

PR)
. ,‘I'l&.“

2 8

Chapter 3

Computation In Actor

Systems

In this chapter, we examine the structure of computation in the actor
paradigm. The discussion here will be informal and intuitive, deferring
consideration of the technical aspects to later chapters. The organization
of this chapter is as follows. In first section, we explain actors and commu-
nications. The second section outlines the constructs which suffice to define
a minimal actor language. We give some examples of actor programs to
illustrate the constructs using only structured “pseudo-code.” In the final
section, kernels of two simple actor languages are defined and a program
example is expressed in each of these languages. The two languages, SAL
and Act, are both minimal yet are sufficient for defining all possible actor
systems. SAL follows an algol-like syntax while Act uses a Lisp-like syntax.

In the next chapter, we will define some new linguistic constructs, but these

32

CHHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 33

constructs will not be foundational; they can be defined using a minimal

actor language. Such extensions to a minimal language demonstrate the

power of the primitive actor constructs.]

3.1 Defining an Actor System "J
Computation in a system of actors is in response to communications sent .f
to the system. Communications are contained in tasks. As computation 1
proceeds, an actor system evolves to include new tasks and new actors that '
are created as a result of processing tasks already in the system. All tasks :1
that have already been processed (and all actors that are no longer “useful,”

a notion we will define more precisely), may be removed (i.e., garbage :

collected) from the system without affecting its subsequent behavior.! The j
configuration of an actor system is defined by the actors it contains as well 1
as the set of unprocessed tasks.

3.1.1 Tasks

In somewhat simplified terms, we can say that the unprocessed tasks in a

system of actors are the driving force behind computation in the system.

We represent a task as a three tuple consisting of:

1. a tag which distinguishes it from all other tasks in the system;

I We refer here to the scimantic equivalence of the systems with and without “garbage.”

Of coursc, the performance of the system is a different matter.

e Tt et Ve ST St T e . DO
AN N2 S R O OSSR R VX (TP ST A YR S L P AR

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 34

2. a target which is the mail address to which the communication is to

be delivered; and,

3. a communication which contains information made available to the

actor at the target, when that actor processes the given task.

As a simplification, we will consider a communication to be a tuple of

values. The values may be mail addresses of actors, integers, strings, or

whatever, and we may impose a suitable type discipline on such values.

There are other possible models here; perhaps the most exciting of such
models, and the one using the greatest uniformity of construction, is one
in which the communications are themselves actors.? In such a model,
communications may themselves be sent communications. For example, if
we want a communication k; to print itself, we could send a communication
ks to the communication k; which asked k; to print itself. Communications
as actors also provide an effective and simple way to implement call-by-
need using futures, where a future is a communication that can be sent a
cominunication to evaluate itself. The semantic theory of actors is, however,
considerably complicated by modelling communications as actors, and we

therefore won’t do so here.?

2The behavior of an actor is to send communications to other actors it knows about (i.e.,

’
[

AR AR

its acquaintances), which in turn do the same until the communications are reccived by
pre-defined primitive actors such as numbers and primitive pre-defined operations (See

Section 4.4.). In the more general universe of actors model, tasks themselves are actors

4

which have three acquaintances, namely the three components of the tuple given above.

« 8 0

3For a discussion of the universe of actors model see §4.4.

[
a e 00,

o e
e 8
s 20

.

S L B I LRI
PRI L AP P

- .-. "~ -.- .-. -.’. '.- ‘.. .‘- .n' -D

VTSRS T P S I s P

o
-

T - " Ty " B e -2

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 35

The target must be a valid mail address. In other words, before an
actor can send the target a communication, it must know that the target
is a valid mail address [Hewitt and Baker 77] . There are three ways in
which an actor a, upon accepting a communication k, can know of a target

to which it can send a communication. These are:

o the target was known to the actor a before it accepted the commu-

nication k,

e the target became known when a accepted the communication k be-

cause it was contained in the communication k, or

o the target is the mail address of a new actor created as a result of

accepting the communication k.

A tag helps us to uniquely identify each task b}" distinguishing between

) . AR
N W'i'" PRI RS
. a'e A

tasks which may contain identical targets and communications. We will

D [
«tata

make use of the uniqueness of each tag when we define an operational
semantics for actor systems. An important observation that should be
made here is that any particular representation of the tags is somewhat
arbitrary. The tags are specified because they are useful in keeping a track
of tasks. However, the tasks themselves are existentially distinct entities.
There are various ways of representing tags; one such representation

“n

is a string of nonnegative integers separated by (periods). Using this

y m——; D o
s AYI'IT!’ , DA A !
Sttt . e e

representation, if w is a tag for task ¢, then w.n, where n is some nonnegative

[N IO
)

)

bt

integer, can be the tag for some task created as a result of processing ¢.

In this way, if we start with a set of tags uniquely associated with the

VI L.

x*ﬂr'. e Te oy
. ety

. s e r s
L 4
N AL RS)

T R T e P e i i S i S M M e i B e, Sy S PR Tt B

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 36

tasks, we can guarantee that all tasks always have distinct tags (by using a
restriction that the last number appended is distinct for each task created
by the same actor in response to the same communication). Note that there

may be only a finite number of tasks in any given system.

"l .
titnatnits ot il e

3.1.2 The Behavior of an Actor

As we discussed earlier, all computation in an actor system is the result

of processing communications. This is somewhat similar to a data-driven

system like dataflow, and in contrast to systems based on processes that

1 e
.

either terminate or are perpetually “active.” Actors are said to accept a
communication when they process a task containing that communication. -]

An actor may process only those tasks whose target corresponds to its mail

4

. . . -

address. When an actor accepts a communication, it may create new actors e
or tasks; it must also compute a replacement behavior. -
For any given actor, the order of arrival of communications sent to that h

actor is a linear order. In particular, this implies that the masl system must —

CRr
" "
.

provide suitable mechanisms for buffering and arbitration of incoming com-

o s
ot

.
" i' o l""'

munications when such communications arrive at roughly the same time.

The masl system places the communications sent to a given target on the
matl queue corresponding to that target. For most purposes, it is appropri-
ate to consider the mail queue as part of the mail system. However, when

we wish to deal with issues related to the arrival order of communications,

{
o

such as the guarantee of mail delivery® we have to consider the mail queue

', Vet

”

/7"
[%

4The presence of commuiication failures in a rcal system should not be considered a hin-

2.7,

r
R

T
]
-
-

S e
o, v,

LRSS
g hev]

‘e
LRI

AP BFY

SN R

s TR L SN

b
b
|
S

:

. (‘* -Jr.n

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS

explicitly.
An actor may be described by specifying:

e its mail address, to which there corresponds a sufficiently large masl

queue®; and,

o its behavtor, which is a function of the communication accepted.

Abstractly, we may picture an actor with a mail queue on which all
communications are placed in the order in which they arrive and an actor
machine® which points to a particular cell in the mail queue. The end of a
communication on the mail queue can be indicated by some special symbol
reserved for the purpose.” We represent this pictorially as in Fig. 3.1.

When an actor machine X, accepts the nth communication in a mail
queue, it will create a new actor machine, X, ., which will carry out the

replacement behavior of the actor. This new actor machine will point to

drance for a theoretical investigation assuming a reliable mail system. See the discussion
in Section 2.4.

5The mail queue will be considered large enough to hold all communications sent to a
given actor. This implies that a mail queue is, in principle, unbounded, while only a
finite fragment of it is used at any given point in time. This is quite similar to a read-
only tape of a Turing Machine. However, the writing is done, indirectly, using the mail
system.

%No assumption should be made about an actor machine being sequential, indeed, an
actor machine, much like machines in the real world, may have components that function
in parallel.

"Thus the variable length of a communication is not a problem.

~
I .r.‘.._. . v'.:'..‘_-‘ T AT

"'\pi“)a x.r"\.:"_‘f'

P
A

Ia T e
S .

o,

'
. oo
atatatalals

A

y

SRARESE BRIV NN Py SR

.

*",

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 38 “]
-

B

! 2 n

mail j

quecuc J

actor machine

Figure 3.1: An abstract representation of an actor. The actor machsne
contains information that determines the behavior of an actor. It accepts
the current communication and can not process information from any other

communication.

the cell in the mail queue in which the n+15t communication is (or will be)

placed. This can be pictorially represented as in Fig. 3.2.

The two actor machines X, and X, ,; will not affect each others be-
havior: X,, processes only the nth communication. (Of course, if X, sends
the actor itself a communication, X, ,; may be the actor machine which
processes the same.) Specifically, each of the actor machines may create
their own tasks and actors as defined by their respective behaviors. Before
the machine X,, creates X, ,;, X, may of course have already created some

actors and tasks; however, it is also the possible that X, may still be in

CIIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 39

I 2 n n+l

mail
qucuc

Xn+l

creates tasks

creates replacement

creates actors

2 mail
qucue

n:.‘:-
Y
e

. »
.

Figure 3.2: An abstract representation of transstion.

v
AR .
St

the process of creating some more tasks and actors even as X, ., is doing

the same. In any event, note that the machine X,, will neither receive any

B AR St SN P o o ettt - . .
A ASgEe BN RN e - ol . -
,‘.\3‘-1‘ MO s AR O Rt W MO A T

- - it A Al Mt e
A N T Ty = v -
AN b A ACC AR At A C I A O E AN E 0

PR
PO IR
.

IS NN

e Y
.t

T ———— EACIAS S It i N bk it Sl Al Sedind Sl ad fed S S A tAAr RN A O S A A

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 40

further communications nor will it specify any other replacement.® N

If we define an event as the creation of a new actor or task, or the speci- .
fication of the replacement, then the order of events that are caused, at any
actor, by the acceptance of communications is a partial order. The replace-
ment machines at any mail address have a total order between them. This
linear order is isomorphic to the arrival order of the corresponding com-
munications which result in their replacement (as may be readily inferred
from the Fig. 3.2).

An event-based picture for computation in actors uses life-lines which -
are shown in Fig. 3.3. Each actor has an order of acceptance of communi- N
cations which is linear. The events in the life of an actor are recorded in the
order in which they occur: the further down the line, the later in local time.
Activations (causal ordering of events) are indicated by the lines connecting
two different actors with the arrow on the line indicating causal direction.
Finally, each lifeline is labeled by the pending communications, i.e., the
communications that have been received but not processed. Clinger (81]
used collections of life-lines to provide a fixed-point semantics for actors.
The resulting pictures are called the actor event diagrams.

A couple of general remarks about the implementation issues are in
order here:

Remark 1. The reader may wonder about the efficiency of constructing a

new actor machine in response to each communication accepted. It should L

8We will later model functions that require more input as a collection of these clemental

actors.

[R

'. a
T2ty

@ l.l
s

CN AR

.
7]

.’ v’

b % ‘¢ e

'.'.f/ I! L3

......
...........................
.................................

P——— -jr“v" 2N S S Je fhese fiase S Shae musve e — T — ng Claliar i 2 T Ty

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 41

be emphasized that this is simply a conceptual assumption that frees us
from the details of any particular implementation. Concurrency simply
means potential parallelism. Some implementations may find it useful to
generally delay constructing the replacement until the old machine can be
cannibalized. However, delaying the construction of the replacement is not
a universal requirement as would be the case in a sequential machine. Thus,
if there are sufficient resources available, computation in an actor system
can be speeded up by an order of magnitude, by simply proceeding with
the next communication as soon as the ontological necessity of determining
the replacement behavior has been satisfied. The advantages of this kind

of pipelining can be illustrated by the following simnple example: Consider

= a calculation which requires O(n?) sequential steps to carry out, where
n_ O(n) represents the size of input. Suppose further that computing the
- replacements takes only O(n) steps. If we had a static architecture with
: O (m) processes, it would take O(n?) cycles per calculation. By pipelining,

an actor-based architecture could carry out m calculations in the same

time as a single calculation because it would initiate the next computation

as soon as the replacement for the previous one had been computed— a

process taking only O(n) steps.

Remark 2. It should also be pointed out that the structure of an ac-
tor machine is extremely concurrent: when any particular segment of the f.-
computation required by the acceptance of a communication has been com-
pleted, the resources used by the corresponding fragment of the “machine” -

are immediately available. It may be difficult, if one thinks in terms of

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 42

pending
tasks

creales aclors

creales

tasks \

target
communication

Figure 3.3: Actor event diagrams FEach vertical line represents the events

occurring in the life of an actor. The arrows represent causal links.

sequential processes, to conceive of the inherent parallelism in the actions
of an actor. The structure of computation in a sequential process is lin- -

ear: typically, activations of procedures are stacked, each activation storing

L o sn. e ok athas 4 PAR TN
AR R A e et e T T T e
P S T I IO AN
-
! ‘
pore

its current state. However, in an actor program, the absence of assign- =

ment commands permits the concurrent execution of the commands in a

L
(-

o
1

s SHAN

-
Pt

Al
[

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 43

specification of the behavior of an actor. We will discuss the specific mech-

anisms for spawning concurrency, such as the use of customers to continue

RS pasarai i iy o

computations required for a transaction, later in this chapter. .

P_'
:
}_
i‘.
:

[

3.2 Programming With Actors

(Yl

In this section, we define the constructs necessary for the kernel of a min-
imal actor language. We also give some simple examples of actor pro-
grams. These examples illustrate, among other things, the versatility of
message-passing as a general mechanism for implementing control struc-
tures, procedure and data abstraction in the actor construct, and the use
of mail addresses instead of pointer types in data structures. The feasibility
of representing control structures as patterns of x.nessage-passing was first

described in [Hewitt 77). N

e

Despite its simplicity, the kernel of an actor language is extremely pow-

. s 0.
.1'1.0,{ '

erful: it captures several important features of computatio-n in the actor
paradigm; among them, the ability to distribute a computation between
concurrent elements, the ability to spawn maximal concurrency allowed by =
the control structure, the unification of procedural and declarative infor-
mation, data abstraction and absolute containment, and referential trans-
parency of identifiers used in a program.

An actor accepts a single communication as “input.” Thus, if a com-
putation is a function of communications from several different actors, it

has to be defined using a system of actors. We will introduce linguistic

«’s D) uJ
e

T

...............
P T SR R e S I Tl T S Y S S S R TR}
.........................

.......

Lo
SIS

the “outside,” i.e., with actors not defined within the configuration. A

program in an actor language consists of :

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 44

constructs to simplify expressing some multi-input functions in a trans-
parent manner. All such constructs can be defined in terms of the actors
definable in a minimal actor language, and we therefore confine our present

discussion to the constructs necessary for a kernel language.

.‘ 3.2.1 The Basic Constructs

To define the initial configuration of an actor system we need to create
some actors and to send them some communications. However, we also

promote modularity by specifying the actors that may commmunicate with

behavior definitions which simply associate a behavior schema with

an identifier (without actually creating any actor).®
new ezpressions which create actors.
send commands which are used to create tasks.

receptionist declaration which lists actors that may receive communi-

cations from the outside.

ezternal declaration which lists actors that are not part of the popu-

lation defined by the program but to whom communications may be

9Such behavior schemas are not considered to be actors in the simple model we are
currently using. In another language, such definitions can be used to create actors that
are “descriptions” of actor behaviors. The behavior of such description actors would be

to create actors of the given description when sent an appropriate communication.

- .
. .

B RN T SRPC I APLI TRT R A L A AN L
PRI I R A Al A A R U AL L A T WU . P Y . 1

U
’ CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 45 Y
- . sent from within the configuration. "

We discuss the syntax and intended meaning for each of the expressions
which can be used in a minimal language. For some simple expressions, we

also show what a feasible syntax might be.

: Defining Behaviors P
Each.time an actor accepts a communication, it computes a replacement :
behavior. Since each of the replacement behaviors will also have a replace- Z.
: ment behavior, in order to specify the behavior of an actor, we need to r

specify a potentially infinite definition. Obviously one can not write an in-
finite string to define each replacement. Fortunately, we have the princsple
of recurstve (or inductive) definition so familiar from mathematics. Essen-
-_ tially, we parameterize each expressible behavior by some identifier which
';" will be a free variable in the definition. Whenever a behavior is specified
::: using the behavior definition, we must specify specific values for the iden-
tifiers parameterizing the behavior definition. For example, the behavior . R
of a bank-account depends on the balance in the account. We therefore :‘

specify the behavior of every account as a function of the balance. When- k
J ever a particular account is created, or a replacement behavior specified, .
:_ff. which uses the behavior definition of a bank-account, a specific value for 5
the balance in the account must be given.

. There are also an infinite number of possible values for the incoming &
'_ communication. Therefore, a behavior definition is expressed as a function ::
' of the incoming communication. E:
:

.........

...

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 46

Two lists of identifiers are used in a behavior definition. The first list

corresponds to paramecters for which values must be specified when the actor

is created. This list is called the acquaintance list. The second list of pa-

rameters, called the communication list, gets its bindings from the incoming

communication. When an actor is created, and it accepts a communication,

it executes commands in the environment defined by the bindings of the "1
identifiers.

r

ey

Creating Actors '—-‘

Actors are created using new ezpressions which return the mail address of

a newly created actor. The mail address should be bound to an identifier or

communicated; otherwise, it would not be useful to have created the actor. ':;::

i
The syntax of new expressions would be something corresponding to the -
following : =3

(new ezpression) ::= new (beh name) (ezpr {, ezpr}*)

The (beh name) corresponds to an identifier bound to a behavior given
by a declaration using a behavior definition. A new actor is created with
3 the behavior implied by the behavior definition and its parameters are
F instantiated to the values of the expressions in the parenthesis. In actor

jargon, we have defined the acquaintances of an actor. The value of the

- expression is the mail address of the actor created and it can be bound to

an identifier called an actor name by a (let command). An actor name may

be used as the target of any communication, including communications sent

in the initial configuration.

)

RS W i Sl A) Pl R Sl D A 3
LI N O AN LI

A
1.1.0..4_ A

ale s e
PAPAFAFA RS

“

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 47

Actors created concurrently by an actor may know each others mail
addresses. This is a form of mutually recursive definition permissible in
actors. [lowever, all the newly created actor knows is the mail address of
the other actor: It does not have any other direct access to the internal

structure of that actor.

Creating Tasks

A tasi: is created by specifying a target and a communication. Communi-
cations may be sent to actors that already existed, or to actors that have
been newly created by the sender. The target is the mail address of the
actor to which the communication is sent. The syntax of a command that

would create tasks is something like the one given below:
(send command) ::= send (communication) to (target)

where a communication is a sequence of expressions (perhaps empty). The
expressions may be identifiers, constants, or the appropriate functions of
these. The expressions are evaluated and the corresponding values are sent
in the communication. The target is an identifier bound to the mail address

of an actor.

Declaring Receptionists

Although creating actors and tasks is sufficient to specify an actor system,
simply doing so does not provide a mechanism for abstracting away the

internal details of a system and concentrating on the behavior as it relates

.

LJ
R

[P

lf‘n".‘f'l 1y

1

e e .
S,
R T T T S

r

................

CIHIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 48

to outside the actor system specified by the program. In order to simplify
reasoning about the composition of independently defined and debugged

systems and to permit greater modularity in a system, we allow the pro-

grammer to specify the initial set of receptionists for any system: The

g reccptionists are the only actors that are free to receive communications
i from outside the system. Since actor systems are dynamically evolving and
- open in nature, the set of receptionists may also be constantly changing.
f'.' Whenever a communication containing a mail address is sent to an actor
. outside the system, the actor residing at that mail address can receive com-
!i munications from the outside and therefore become a receptionist. The set
- of receptionisis increases as the system evolves.

If no receptionists are declared, the system can not initially receive

communications from actors outside the system. However, the mail address

of an actor may subsequently be delivered to an external actor, so that the

actor system may evolve to include some receptionists. This illustrates the

potentially dynamic nature of the set of receptionists.

e

»
. . . -
I3 . e .
. P - A I A 2 Brh
[0)" O

.l fl,

Declaring External Actors

o
Communications may be sent to actors outside an actor system. Typically, -4
an actor may get the mail address of another actor which is not in the]
- system in a communication from the outside. It would then be able to send :
communications to this actor. However, even when an actor system is being

defined, it may be intended that it be a part of a larger system composed

of independently developed modules. Therefore, we allow the ability to

T T R T Srrm—_—5——~ -

o ST e N e e - St et et

Ao/ N, S a2l gk Yt * Sl Y S ir i S Sl e g

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 49

declare a sequence of identifiers as external. The compiler associates these
identifiers with actors whose behavior is to buffer the communications they
accept. Whenever a given actor system is composed with another in which
the external actors arc actually specified, the buffered mail can be forwarded
to the mail address of the actual actor (which was hitherto unknown). We

will show how the compositionality can be actually implemented in an open,

b evolving system using message-passing.

There need be no external declaration in an program. In this case, no

system defined by the program. However, as the system receives commu-

100

AT TR T '.". ..'. -

h communication can initially be sent to mail addresses outside the actor
b
S
L
3

nications from the outside, the set of external actors will “grow.” Notice

PR

that it is useless to have an actor system which has no receptionists and no

.

e 3 'V."

external actors because such an autistic system will never affect the outside
world!
Commands

The purpose of commands is to specify the actions to be carried out. We

t have already discussed most of the basic commands which would create new
1

actors and new tasks. We also need a command to specify a replacement.

The syntax of the become command in SAL is:
become (ezpression)

where the expression is bound to a mail address. The actor simply forwards
all its mail to the actor at the specified mail address. If the expression is

a new expression, then there is no need to assign a new mail address to

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 50

the created actor since that mail address would be equivalent to the mail
address of the actor it is replacing. Thus the picture in Fig. 3.2 is concep-
tually correct. If the expression is the mail address of an already existing
actor then operationally the actor becomes a forwarding actor to the exist-
ing actor. In this case, the picture in Fig. 3.2, although literally correct,
does not express the equivalence of the two mail queues. Denotationally,
the replacement behavior is the same as the behavior of the actor to which
the communication is forwarded. This denotational equivalence would not
be valid in a model which did not assume arrival order non-determinism
and the guarantee of delivery.

There is one other kind of command which is necessary: a conditional
which determines which branch is taken. Conditional or branching com-
mands are of the usual if-then or case form. It is also useful to allow let
bindings so that identifiers may serve as a shorthand for expressions in a
particular context. We have already shown the use of let bindings in the

recording of the mail addresses of newly created actors.

Default Behaviors

Since all actors must specify a replacement behavior, we use the default
that whenever there is no executable become command in the code of an
actor in response to some communication, then we replace that actor with
an identically behaving actor. Since the behavior of an actor is determined
by a finite length script involving only conditional commands for control

flow, it is can be thought of as a finite depth tree one of whose branches is

!.-' » @

.-\I\J\) '

PR Y

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 51

executed. The particular branch executed depends on the communication.!®
Thus it is (casily) decidable if no replacement has been specified for a given

acquaintance and communication list.

3.2.2 Examples

We define several examples of programs written using actors. These ex-
amples illustrate the relative ease with which various date structures and
control structures can be implemented in an actor language. Specifically,
we will give the implementation of a stack as a “linked list” of actors.
This simple example also illustrates how the acquaintance structure makes
the need for pointer types superfluous in an actor language. Other data
structures can be defined in a similar manner.

The second example we present is that of the ‘recursive factortal func-
tion. This is a classic example used in (almost) any work on actors. An
iterative control structure can also be easily defined [Hewitt 77]; we leave
it as an exercise for the interested reader. The technique for an iterative
factorial is similar to the standard accumulation of parameters in functional
programming. The final example in this section is an implementation for
an actor specified by an external declaration. This example should clarify
the use of external declarations to bind actors that are in the population of
some independent module. The independent module can be later composed

with the module presently being specified. We will deal with some more

19The tree need not be finitely branching because the communications can be one of an

arbitrary countable set.

Te N, LN e N ‘-__'...‘. AT TR _‘.'.‘."'.'.-."-".-.'A._- .
. \.'-‘\'-'-_'-".' I ‘..
CO I '-. .i.'.l‘ »-:.. ¥ SRR RS TR I

~ - 0 »
LA
)

Ctate
'
ANRN

KIS
NSRS §

Y

P T T TR —"—" PIEI S et S AN S i i el adad Sl ‘A S Al i S S SR S g

........

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 52
complex examples in the next chapter.

Example 3.2.1 A Stack. We implement a stack as a collection of actors
with uniform behavior. These actors will represent total containment of
data as well as the operations valid on such data. Assunie that the linked

list consists of a collection of nodes which store a value and know the mail

address of the “next” actor in the link. The code for defining a stack element
is given belov. We skip all error handling code because such details will
simply detract from the basic behavior being expressed. We assume that
‘ there is a pre-defined value NIL and use it as a bottom of the stack marker.
| Two kinds of operations may be requested of a stack-node: a push or a pop.
In the first case, the new content to be pushed must be given, and in the
second, the customer to which the value stored in the stack-node can be

sent.

a stack-node with acquaintances content and link
if operation requested i3 a pop A content # NIL then
become link

send content to customer

F P
D
‘l':.‘,

.
by

if operation requested 1s push then .

LI

let P = new stack-node with current acquaintances
{ become new stack-node with acquaintances new-content and P }

The top of the stack is the only receptionist in the stack system and was
the only actor of the stack system created externally. It is created with a

NIL content which is assumed to be the bottom of the stack marker. Notice : .-‘:

..............
................................

(ah
.

K IR

»

[N
b
[
v
e
[

e

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 53

that no mail address is ever communicated by any node to any external
actor. Therefore no actor outside the configuration defined above can af-
fect any of the actors inside the stack except by sending the receptionist
a communication. When a pop operation is done, the actor on top of the
stack simply becomes the next actor in the link. This means that all com-
munications received by the top of the stack are now forwarded to the next
element.

For those concerned about implementation efficiency, notice that the
underlying architecture can splice through any chain of forwarding actors
since their mail address would no longer be known to any actor, and in due
course, will not be the target of any tasks. The user is entirely free from

considering the details of such optimizations.

Example 3.2.2 A Recursive Factorial. We give this classic example
of a recursive control structure to illustrate the use of customers in im-
plementing continuations. The example is adapted from [Hewitt 77] which
provided the original insight exploited here. In a sequential language, a re-
cursive formula is implemented using a stack of activations. In particular,
the use of a stack implies that a factorial can accept only one communica-
tion from some other actor and is busy until it has computed the factorial
of the given number. There is no mechanism in the sequential structure for
distributing the work of computing the factorial or concurrently processing
more than one request.

Our implementation of the factorial actor relies on creating a customer

which waits for the appropriate reply, in this case from the factorial itself,

.....................
- P

.......

L
...

P
Sy I

A’

OO

£

4
1

................

.....

e e s S R R T S e T N T o L L T L e ==

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 54

so that the factorial is concurrently free to process the next communication.
We assume that a cc;mmunication to a factorial includes a mail address to
which the value of the factorial is to be sent. The code for a recursive
factorial is given below. Note that we use self as the mail address of the
actor itself. This mail address will be instantiated when an actor is actually
created using the behavior definttion and serves as shorthand by eliminating

the need for a parameter in the definition.

Rec-Factorial with acquaintances self
let communication have an integer n and a customer
become new Rec-Factorial
ifn=20
then send [1] to customer
else let ¢ be a Rec-Customer created which will accept an integer k
and send n*k to the customer
{ send n — 1, the mail address of c to self }

In respunse to a communication with a non-zero integer, n, the actor

with the above behavior will do the following:

e Create an actor whose behavior will be to multiply the n with an
integer it receives and send the reply to the mail address to which the

factorial of n was to be sent.

e Send itself the “request” to evaluate the factorial of n — 1 and send

the value to the customer it created.

...........

. . LAY

- o .

.......

e e 2l A
g l' .' l. ’

M

(]
/ ’ l. l. o' . 4'
: ale e

Rt
S

.....
o . R
........

Db Mt et Seah AL et AR At A L it RACI R AL A A T N A G A S A A A N AN M

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 55

One can intuitively see why the factorial actor behaves correctly, and

E: can use induction to prove that it does so. Provided the customer is sent the
P correct value of the factorial of n — 1, the customer will correctly evaluate

the factorial of n. What’s more, the evaluation of one factorial doesn’t
f have to be completed before the next request is processed; i.e., the factorial
‘ actor can be a shared resource concurreatly evaluating several requests.

8 The behavior of the factorial actor in response to a single initial request is

. shown in Fig. 3.4.

h This particular function is not very complicated, with the consequence
- that the behavior of the customer is also quite simple. In general, the
behavior of the customer can be arbitrarily complex. The actor originally

receiving the request delegates most of the processing required by the re-

quest to a large number of actors, each of whom is dynamically created.
Furthermore, the number of such actors created is in direct proportion to
- the magnitude of the computation required.

There is nothing inherently concurrent in the recursive algorithm to

evaluate a factorial. Using the above algorithm, computation of a single

factorial would not be any faster if it were done using a sequential language
as opposed to an actor language. All we have achieved is a representation -
of the stack for recursion as a chain of customers. However, given a network j
of processors, an actor-based language could process a large number of re-

quests much faster by simply distributing the actors it creates among these

RSO

processors. The factorial actor itself would not be the bottleneck for such

'
[

computations. (Of course, it would be useful to have fast communication

)
d
]
4
[
4
]
X
gy
1
4
]
q
‘}L. '-&."-d.l

PP

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 56

~
- e

. (s
PRI t".'x'n
¢ h T I)
P bad otd LTS AT S ey .

Jactorial

4’4/’/ 3, customer J
2, ¥ =
" &
1.y 4

V24 4’//
0.Y

; L/(_,—__._?I
6 «— |

to customer

‘.
-
.
n-’
1

Figure 3.4: The computation in response to a request to evaluate the facto-

rial of 8. The v ’s represent dynamically created customers (see text).

links between the processors).

In general, there are also more parallel algorithms for evaluating func-
tions, and these algorithms can be exploited in an actor-based language.
For example, a more parallel way of evaluating a factorial treats the prob-
lem as that of multiplying the range of numbers from 1...n. The problem is
recursively subdivided into multiplying two subranges. Such an algorithm

results in the possibility of computing a single factorial in log n parallel

...

.............
..

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS

time.

Example 3.2.3 External Actors. An actor program defines an initial

configuration with its external actors defined by an (ezternal declaration).

To promote composition of independently programmed modules, the exter-
nal actors are comnpiled in a specific manner. This example simply illus-
trates how one might implement external actors. The desired behavior of

an external actor is to as follows:

e simply hold all communications sent to it until the system is composed

with another that contains the actor in question.

e respond to a communication telling it to forward all its mail to the

actual actor when the composition is carried out.

.

In response to an external declaration, we actually create an actor which
will exhibit the above behavior.

The code for an implementation can be given as follows. Assume that
an actor called buffer is simultaneously created and, appropriately enough,
buffers all communications until it accepts a comimunication telling it to
forward them to a given mail address. Such a buffer could be specified as
a queue using a linked list in a manner analogous to the implementation
of the stack given above. One could also be a bit perverse and specify the
buffer as a stack without changing the correctness of its behavior (recall
the arrival order nondeterminism of the communications). As a stack, the

behavior of the buffer would be given as below:

................

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 58

Buffer with acquaintances content and link
if operation requested is release A content # NIL then
send content to castomer
send release request with customer to link
become customer
if operation requested is hold then
let B be a new buffer with acquaintances content and link

{ become new buffer with acquaintances new-content and B }

Assume for the purposes of simplification that a protocol for specifying
a communication to become the actor at the mail address m exists and
that such a communication has the form become m, where m is the mail
address of the actor to which the mail should be forwarded. The behavior

of an external actor is specified as below:

eztern with acquaintances buffer
if the communication is become customer
then become customer
send release request with customer to buffer
else send hold request with customer to buffer

3.3 Minimal Actor Languages

In this section, we give the syntax for two minimal languages, SAL and f'
Act. The programming language SAL has been developed for pedagogical ;'...;
reasons and follows an algol like syntax. Act is related to the languages im- ~ﬁ
plemented by the Message-Passing Semantics Group at M.1.T. and follows "
C:::
R
:l\:l
A

o
§ 2%

e

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 59

a lisp-like syntax. Act can be considered as a kernel for the ActS language
[Hewitt, et al 84]. One basic difference between SAL and Act is in how they
bind identifiers and would provide for their authentication. SAL would use
conventional type-checking whereas Act uses an elaborate description sys-
tem based on a lattice structure for reasoning with the descriptions. For
the rest of the thesis we will use expressions whose syntax we have already
given in the previous section. For simple examples we will use SAL's syn-
tax. However, it is not necessary to look at the details of the syntax in this
section: the only feature of SAL’s syntax that the reader needs to know is
that the acquaintance list is enclosed in (...) while the communication list
is enclosed in [...].

Notation. The usual Backus-Naur form is used. In particular, (...) en-
closes nonterminal symbols. We use darker letters for the terminals and «d
for identifiers. {...} is used to enclose optional strings, and a superscripted
* indicates 0 or more repetitions of the string are permissible. When a
reserved symbol, such as {, is underlined, it stands for itself and not for its

usual interpretation.

3.3.1 A Simple Actor Language

We give the syntax for the kernel of SAL. Behavior definitions in a SAL
program are declarative in the the same sense as procedure declarations in
an algol-like language: behavior definitions do not create any actors but
simply identify a identifier with a behavior template. Actors are created by

new ezpressions whose syntax is the same as that given in the last section.

-

e e e e -
R R Rt
2 o e -

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 60

e
o

R A

[S
L o ate te f
Lok ag el g 2 4 4

The syntax of behavior definitions is as follows:

(behavior definition) ::=
def (beh name) ((acquaintance list)) [(communication list)]

(command)*
end def

LU AR R S
AT SRR

Quite often the identifiers to be bound depend on the kind of commu-
nication or acquain' - - list: For example, if the communication sent to a
bank is a withdrawal request then the communication must also specify the

amount to be withdrawn; but if the communication is a request to show

. e T DR A

N e
s wcw A L
ra PR

the balance, then it should not specify any amount. We follow the varsiant

-ecord structure of Pascal [Wirth 72| to deal with the variability of the

~*if~r bindings. Basically, we branch on the value of an identifier called
‘eld and depending on the value of the tag-field, different identifier
e expected. The value of tag-field is called a case label.

The s, « of the parameter lists is as follows:

(parameter list) ::= {id | (var list) }| {,sd |, (var list) }* | e

g (var list) ::= case (tag-field) of (varsant)' end case
' (variant) ::= (case label) : (parameter Isat)
F where 1d is an identifier, € is an empty string (in case the parameter list

is empty), the tag field is an identifier, and the case label is a constant

3 (data-value). The example below illustrates the use of parameter lists. A

cominunication list in the behavior definition of a bank account is given.

S e
a e ‘e %% 2 b %

AERAC A 8 N R AR A Mt i e bt Sald S B i AR

PaUGCAN o

..............
.............................

CIHIAPTER 3. COMPUTATION IN ACTOR SYSTEMS 61

case request of

e

deposit : (customer , amount)
withdrawal : (customer , amount)
balance : (customer)

end case

Thus a communication [deposit , Joe , $50.00], where Joe is the mail ad-
dress of some actor, would be an appropriate communication to send to a
bank account created using the above behavior definition.

We avoid specifying any type structure in our programming language
for the sake of simplicity. It is not difficult to specify one: All we would 3
have to do is ﬁse type declarations with the every identifier. Static type =
checking could be performed when the code is compiled to make sure that
the identifiers are used correctly in the commands (with respect to their
types). For example, identifiers used as targets must have the type mail
address. Dynamic type-checking can be used whenever a new actor is ac-
tually created: it would check if the parameters are correctly instantiated.
Dynamic type-checking would also have to be used when a communication

is accepted. S

(command) := if (logical expression) then (command) &
{else (command)} fi | .

become (ezpression) |

(send command) | (let bindings) {command} i:'_‘

(behavior definition) | (command)*

The syntax is for the most part quite obvious. We have already defined

behavior definitions above. Note that the scope of an identifier bound by .

R I T T I N I T N T e N R I i S et e M A I ATt a

......

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 62

.
.

a behavior definition is lexical. The syntax for send command was given in

AN

the last section. It is simply:

P
P

(send command) ::= send (communication) to (target)

let bindings allow one to use an abbreviation for an expression. There is

i
o
.

- no mutual recursion unless new expressions are being bound; in the latter

case, the actors created can know each others mail addresses. The syntax

for let bindings is as follows:

(let bindings) == letid = (ezpression)
and id = (ezpression)

oooooo

We give only one example of a behavior definition in SAL to illustrate the
flavor of the syntax. The code below is for an actor which behaves like a

stack-node discussed in example 3.2.3 (§3.2).

def stack-node (content,link)
[case operation of
pop : (customer)
push : (new-content)
end case]
if operation = pop A content # NIL then
become link

. send content to customer
o fi
,.f_ if operation = push then
t let P = new stack-node (content,link)
[:Zf { become new stack-node (new-content , P)}
:;:' fi end def

e AR

g

»
R

............
...
...
...
..................................
S T T N S T T T T T T N I T T ETC R MU L L VR SR N
................

- LSS -

Zaa

PERAAES Lo

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 63

L B
b .

Note that we assume NIL is a predefined value and SINK is the mail address

S OOA0

of some actor. A node can be created by a new command of the form given

.. o 4

below.
let p = new stack-node (NIL,SINK)

The node created will subsequently serve as the receptionist for the stack
since the mail address bound to p will always represent the mail address of

the top most node of the stack.

3.3.2 Act

The language Act is a sufficient kernel for the Act$ language which is
a descendant of Act2 [Theriault 83]. One basic distinction between Act
and SAL is that the former uses a keyword-based notation while the latter
uses a positional notation. The acquaintance list in Act is specified by
using identifiers which match a pattern. The pattern provides for freedom
from positional correspondence when new actors are created. Patterns are
used in pattern matching to bind identifiers, and authenticate and extract
information from data structures. The simplest pattern is a bind pattern
which literally binds the value of an identifier to the value of an expression in

the current environment. The syntax of pattern matching is quite involved

and not directly relevant to the our purposes here. We therefore skip it.
When an actor accepts a communication it is pattern-matched with the
communication handlers in the actor’s code and dispatched to the handler

of the pattern it satisfies. The bindings for the communication list are

]
-t

=

v
205

. o,
P |) B
e te %a 'a la

a
Pl

S, .
> "0 e
LA

1t

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 64

extracted by the pattern matching as well. We do not provide the syntax
for expressions except to note that the new ezpressions have the same

syntax as in §3.2 namely the keyword new followed by an expression. The

syntax of behavior definitions in Aect programs is given below.

(behavior definition) ::= ?;?
(Define (new id { (with identifier (pattern)) }*)
(communication handler)*) b

(communication handler) ::=

k _ (Is-Communication (pattern) do (command)*)
-)

L -

The syntax of commands to create actors and send communications is

' the same in actor definitions as their syntax at the program level. The
. syntax of the send-to command is the keyword send-to followed by two

expressions. The two expressions are evaluated; the first expression must

evaluate to a mail address while the second may have an arbitrary value.

The result of the send-to command is to send the value of the second

expression to the target specified by the first expression.

(command) ::= (let command) | (conditional command) |
(send command) | {become command)

(let command) ::= (let ((let binding)*) do (command)®)

(conditional command) ::= (if (expression)
(then do (command)*)

(else do (command)*))

CHAPTER 3. COMPUTATION IN ACTOR SYSTEMS 65
(send command) ::= (send-to (expression) { expression))
(become command) ::= (become (expression))

The example of a stack-node definition from §3.2 is repeated below.
3 For simplicity, we skip all error handling code. Note the keywords in the
- acquaintance and communication lists. These keywords allow a free order
of attributions when the actors are created or when communications are
sent. All the bindings we give are simple; in general the bindings can be
E restricted to complex patterns which allow authentication of the data by

pattern matching.

(define (new stack-node (with content =c)
(with next-node =next))

(Is-Communication (a pop (with customer =m)) do
(if (NOT (= c empty-stack))
(then(become next)
(send-to (m) (a popped-top (with value =c))))))

(Is-Communication (a push (with new-content =v)) do
(let (x = new stack-node (with content c¢)

(with next-node next)).
do (become new stack-node (with content v)
(with next-node x)))))

boor

A LI

bR T s
[IS I

»,
v
K.
.
g
b

.0 e, -.s q.-'.~‘- v.- \‘-‘_-.s TR e, e Te N

Chapter 4

A More Expressive Language

In this chapter, we will define some higher-level constructs that make the
expression of programs somewhat simpler. The purpose of this exercise is
two-fold: firstly, we wish to build a somewhat richer language, and secondly,
we illustrate the versatility of the constructs in a minimal actor language.
For purposes of brevity, we will use SAL in simple examples. In more in-
volved examples, we simply use pseudo-code. The issues discussed in this
chapter include: developing a notation to represent functions whose ar-
guments are supplied by communications from several different actors; the
question of delegation which arises when determining the replacement actor
requires communicating with other actors; the meaning and representation
of seéuential composition in the context of actor system; and lastly, the
implementation of delayed and eager evaluation for arbitrary expressions.
The interest in such evaluation strategies stems in part because they are

interesting ways to demonstrate the utility of mapping values like numbers

66

AN) _-- AR WSO

.....
o

{
/4’
/'.-
/
/

.
.
«
.
Y v e 'y
’ o

Al ST

AR AR
’ [I T I
Tttt

P A

T

AR AR
LW L

s v
L
o
PN

v e o ..
» s 8 2

..
WA

3 : ‘ .' h " . .
.‘1.:\ _.\ \4 ‘r N, 'n..a;-..\ ’a,.gh‘smm., .-.‘_\'.x‘_\l._a.J. POAOA

;.!J
-
2
i

hd
-

PRt AN
) " Vs v
A

—~

v
','-a

CIHIAPTER 4. A MORE EXPRESSIVE LANGUAGE 67

into a corresponding set of actors.

4.1 Several Incoming Communications

One of the simplest questions one can ask is what the representation of
functions of scveral different inputs is going to be. If all the values neceded
to evaluate a function are to be received from the saine actor, and at the
same time, then there is no issue because communications in the kernel
language are defined as a list of values. In general, however, carrying out
some computation may require values from different actors. An aclor need
not know who the sender of the communication it is currently processing is.
Modelling the above situation requires using some special protocols. The
specifics of the construction are dependent on the type of scenario in which

the multiple inputs are required.

4.1.1 A Static Topology

There are two distinct possible scenarios for an actor representing a func-
tion of several arguments. If the sender is irrelevant, then the actor simply
becomes an actor which responds appropriately to the next incoming com-
munication. If the senders are relevant but static, as in dataflow languages,
then we can represent the function as a system of actors: one actor as
the receptionist for each sender and one actor that does the final function
evaluation. Each receptionist buffers communications until it receives a

ready communication from the function-apply actor, and then it sends the

v St St B I A S A A e S M

e T P TN TNy~

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 68

SJunction-apply actor another communication together with its own mail ad-
dress. The mail addresses serve to identify the sender. A concrete picture
for such a function-apply is an agent on an assembly line which is putting
“nuts” and “bolts” together and nceds one of each to arrive in order to
fasten them before passing the result on. The receptionists act to buffer
the “nuts” and “bolts.” s

Consider the simple case of a function-apply actor which needs two
inputs and sends the result to an actor at the mail address m, as shown
in Fig. 4.1. We assume actors at mail addresses m; and m; act to buffer
incoming arguments and are the receptionists for this system of three actors.
The actor at m is an external actor. The program for the actor to evaluate
the function f can be given as below.

We give two mutually recursive definitions. Only one actor need be
created using the two-inputs-needed definition. The behavior of this actor
will be alternately specified by one or the other of the definitions. One

observation that can be made is that the mutual recursion in the definitions

is simply to make it easicr to understand the code: It would be entirely

possible to write a single definition to achieve the same purpose. The

a alternate definition would use an acquaintance and branch on its value to

E the two possible behaviors. . 2
. def two-inputs-needed (m, , m, , m) | sender , arg] :
- if sender = m, i

then become new one-input-needed (m,, my, second, arg) -

else become new one-input-needed (m;, m,, first, arg)
fi end def

.......

-t

............

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 69

N~ Nt/

. —m m2 -
g S~ receptionist
=
2 -
.
:.. Junction-
& apply
S

/" external actor
configuration \ m 'y
a

Figure 4.1: A fized topology for a two input function.

def one-input-needed (m;, m,, m, new-arg-position, old-arg)

[sender , arg | *

let k = (if new-arg-position = second then f (old-arg , new-arg) ‘
else f (new-arg , old-arg) fi) -
{send [k] tom } -

send ready to m,

send ready to my,

become new two-inputs-needed (m; , my)
end def

..............................
---------------- T A

ORI RN I SRR ,

. MG IO N N AR

PEPAL WRTR AL WA W W, W TV T T T AT W WA

ol M A e S /I P AT St Mt Yt M Pt b At Jundh AR I It e T TP TR r—" ";m

—
o o

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 70 —Jf

The function-apply actor which needs two inputs from actors m; and m. can

be created by the expression new two-inputs-needed (m,,m;). We assume :.':

that the actor m is defined in the lexical scope of the new expression. ‘_‘Jy

N

t -
- 4.1.2 A Dynamic Topology
i A more interesting case of a many argnment function is one in which the - il
3 '.

senders can vary. One frequently useful form occurs when more input to
complete some computation may depend on the segment of the computa-

tion that has been carried out so far. Such a situation represents a dynamic _;

topology of the interconnection network of actors. For example, an interac-

tive program may need more input to continue with some transaction. The R

source of the input may vary: the program may sometimes get the input -
F._ off some place on a disk, or perhaps from a magnetic tape, or a user. A -]
E: static topology where all the communications are rcceived from the same \
:: senders before the computation starts, or even during it, will not work in ’
ﬁ this case. -«;
:&f The general forin for implementing requests for input from some par- -:1
N ticular actor is a call expression, which has the syntax: ?

14
r)
Iy

call g [k|

where k is a communication and g is an identifier bound to a mail address.

The value of the call expression is the communication sent by g as the reply

? ~ A

of the computation is given in Fig. 4.2. However, the figure is somewhat : S

when it accepts the present communication k. One way to picture the flow -

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 71

misleading as a representation of what actually occurs in an actor system.
The actor f does not (necessarily) have to wait for the reply from the actor
g: a customer can be created which will continue processing when the reply
from the actor g arrives. While the customer is “waiting” for the reply

from g, the actor f may accept any communications pending in its queue.

Figure 4.2: The behavior of actor f in response to a communication may be

4

. . . . 9

a function of a communication from the actor g. N
e

The use of customers to implement continuations is more accurately

portrayed in Fig. 4.3. This figure may be compared to the example of the
recursive factorial in §3.2. There is some sequentiality, modcled by the
causality ordering of the events, in the course of the computation triggered

by a communication to the actor f. There is a degree of concurrency as

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 72
well. If the call expression occurs in the following context in the code for f:

S letz =(call g[k]) {S} S"

then the actions implied by S’ and S" can be executed concurrently with :::
the request to g. Moreover, as discussed above, we do not force the actor f ::f
to wait until the reply from the actor g is received. The actor f would be =

free to accept the next communication on its mail queue, provided it can
compute its replacement.! The customer created to carry out the actions

implied by the command S will wait for the reply from the actor g.

Notice that the general scheme for representing requests is analogous to | ’1

our earlier implementation of the factorial actor. Using a call expression,

the program for a recursive factorial may be written as below:
def exp Rec-Factorial () [n]
become new Rec-Factorial ()
ifn=20
then reply (1]
else reply [n = (call self [n—1])]

fi end def
We use def exp instead of def so that it is clear that the actor will return
a reply to a customer that is implicit in all communications accepted. The 1

incoming communication will have the form:

! We will discuss the case where an actor can not compute its replaceinent without further

input in the next section.

AIACARCAA SN A N N A i A i s et b el el

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 73 g

N ;{e

\/ N

’-
l/ \
b customer :::
- £
o
- [
-’ &',
; Figure 4.3: The behavior of actor f is defined by program with a call ez- E;
ﬁ pression which requests more input. Some of the events are activated by the ’
- reply to a customer. .
b~
[m,kl,...,kj] i
but our syntax explicitly shows only [ky,...,k;]. The mail address m is j::
bound when the expressional actor gets a communication. A translator can ::.
insert the customer and subsequently map the command reply | z] into the &
2 equivalent command: .
&
> send [z] to m R
55 The actor at m will be the customer which will continue the transaction 7
- -
'.'_::. initiated at the time of its creation. Comparing the above code with that A
- R
q".' -~
ooy W

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 74

of factorial in the previous chapter (see Fig. 3.4) should make it clear how
the behavior of the appropriate customer can be deduced: essentially, the
segment of the environment which is relevant to the behavior of the cus-
tomer has to preserved; a dynamically created customer can do this. A
SAL compiler whose target language is the kernel of SAL can translate the
above code to one in which the customer creation is explicit. Also note that

only one reply command may be executed (in response to a single request).

Thus a purely expression oriented language can be embedded in SAL

(or equivalently in Act). The concurrency in such a language is inherent
and the programmer does not have to worry about the details related to
creating customers for implementing continuations. Another advantage to
the “automatic” creation of customers is that it provides protection against
improper use by the programmer, since the programmer has no direct access
to the mail address of the customer created.

There is one aspect of the expression oriented language that may be dis-
turbing to the functional programming afictonados: namely, the presence
of side-effects implicit in the become command. Recall that the ability to
specify a replacement behavior is necessary to model objects with changing
local states. The become command provides a mechanism to do so. The
become command is actually somewhat analogous to recursive feedback in
a dataflow language. This similarity (and the differences) will be discussed

in greater detail in chapter 6.

AP IRE | MPLPAPRE
.
. -

AT
(4

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 75

.

4.2 Insensitive Actors

-

."A

When an actor accepts a communication and proceeds to carry out its

computations, other communications it may have received must be buffered ¢
until the replacement behavior is computed. When such a replacement :
actor is known, it processes the buffered communications, as well as any
new ones received. The precise length of time it takes for an actor to L
respond to a communication is not significant because no assumption is]

made about the arrival order of communications in the first place.?

i A

However, the desired replacement for an actor may depend on com-
munication with other actors. For example, suppose a checking account -
has overdraft protection from a corresponding savings account. When a
withdrawal request results in an overdraft, the balance in the checking ac-
count after processing the withdrawal would depend on the balance in the
savings account. Thus the checking account actor would have to commu- =
nicate with the savings account actor, and more significantly the savings %
account must communicate with the checking account, before the new bal-
ance (and hence the replacement behavior) is detcrmined. The relevant
communication from the savings account can not therefore be buffered un-
;" til a replacement is specified!
We deal with this problem simply by defining the concept of an in-
= sensitive actor which processes a type of communication called a become

communication. A become communication tells an actor its replacement

BR8P

2Communication delays are an important performance issue for a particular realization

o,

of the abstract actor architecture. Qur focus here is restricted to semantic questions.

P
«

s
5P

<, .
>
S

-,
-
n

PR AR e AN I A S M A P MRS AC AN BRSNS AR A A NS S el Nl Sl S A Al DA

CIHIAPTER 4. A MORE EXPRESSIVE LANGUAGE 76

behavior. The behavior of an insensitive actor is to buffer all communica-

LR
LI g

tions until it receives a communication telling it what to become. Recall
that external declarations were similarly implemented in Example 3.2.3.
First consider what we would like the behavior of a checktng account
to be: if the request it is processing results in an overdraft, the checking
account should request a withdrawal from its savings account. When a

reply to the request is received by the checking account, the account will

do the following:

i e Reply to the customer of the (original) request which resulted in the r
[overdraft; and, ;:.i
N e Process requests it subsequently received with either a zero balance]
” or an unchanged balance. -
- Using a call ezpression, we can express the fragment of the code relevant :
N to processing overdrafts as follows: :
let r = (call my-savings [withdrawal , balance — amount) =
§ { if r = withdrawn (_
- then become new checking-ace(0, my-savings) Yy
' else become new checking-acc (balance , my-savings) Lo
fi ™
reply [r] } =
. To show how a call expression of the above sort can be expressed in -
N terms of our kernel, we give the code for a bank account actor with overdraft : ,',_‘:
. N
.{::.
R
o~
i e L L s e e e L

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 77

protection. Again the code for the customers and the insensitive actors need

s e e e
24 & %
[y A ,'.‘ﬂ.:,l

not be explicitly written by the programmer but can instead be generated
by a translator whenever a call expression of the above sort is used. That "
is to say, if a become command is in the lexical scope of a let expression
that gets bindings using a call expresstion, then the translator should do the
work explicitly given in the example below. Not requiring the programmer
to specify the behavior of the various actors created, such as the insensitive
bank account and the customer to process the overdraft, protects against

erroneous communications being sent to these actors. It also frees the -

l"”-
.

rogrammer from having to decide her own protocols.

A bank account with an overdraft protection is implemented using a '
system of four actors. Two of these are the actors corresponding to the :
h checking and savings accounts. Two other actors are created to handle
requests to the checking account that result in an overdraft. One of the

actors created is simply a buffer for the requests that come in the checking

f'r'-..’- e s

account while the checking account is tnsensittve. The other actor created,

- an overdraft process, is a customer which computes the replacement be-
: havior of the checking account and sends the reply to the customer of the
- withdrawal request. We assume that the code for the savings account is ,_
S almost identical to the code for the checking account and therefore do not)
specify it here. The structure of the computation is illustrated by Fig. 4.4
which gives the actor event diagram corresponding to a withdrawal request ‘
causing an overdraft. T
The behavior of the checking account, when it is not processing an over-

A

AN ["'K'ﬁ “

TR NIRRT T TN YTy Rqu e N e,
R . L N

CHAPTER 4. A MORE EXPRIESSIVE LANGUAGE 78
checking-acc savings-acc

Crequest)

overdrafi-
proc

<hold>

Crelease>

1

.

. .
e e a e
PR W P W |

Figure 4.4: Insensitive actors. During the dashed segment the tnsensitive

checking account buffers any communications it recesves.

draft, is given below. When the checking account accepts a communication

which results in an overdraft, it becomes an insensitive account.

1
<
g
4
A
‘

R
»
N
)
!
L
h
.
)
'
)
.
3
\

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 79

checking-acc (balance , my-savings) [(request)]
if (deposit request)
then become new (checking-acc with updated balance)

send (receipt) to customer N

if (shotw-balance request)

send [balance] to customer -

if (withdrawal request) then

P
oty

if balance > withdrawal-amount

- - v .
EPLAPRSE

PR
P WL

then become new (checking-acc with updated balance)

r

send (receipt) to customer

else let b = new buffer 0
and p = new overdraft-proc e
{become new insens-acc (b,p) } E"*«
send (withdrawal request with customer p) to my-savings} t"j*

The behavior of an “insensitive” bank account, called insens-acc, is
quite simple to specify. It is given below. The insensitive account forwards
all incoming communications to a buffer unless the communications is from
the overdraft process it has created.’ The behavior of a buffer is similar
to that described in Example 3.2.3. The buffer can create a list of com-
munications, until it receives a communication to forward them. It then
forwards the buffered communications and becomes a forwarding actor so

that any communications in transit will also get forwarded appropriately. :j:j

3Due to considerations such as deadlock, onc would program an insensitive actor to

ALt

B IR

be somewhat more “active” (sce §6.1). Good programming practice in a distributed

i

P I

environment require that an actor be continuously available. In particular, it should be

possible to query an insensitive actor about its current status.

LR
a

-,

»

AR

e g

> s e s o A " — Ty >
A ACR R AR R SN N Fa S s kS Nanh ta b el Ned Al ol MR SV g T e e e T T RS TR LG TR TR .

“e t e 8 ¥ @
e %0 N0 Te Ty Te e
P
YR
LIPS 2

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 80 "
.-‘:J
<

insens-acc (buffer, prozy) [request , sender] b
if request = become and sender = prozy e

-,
) E

» »
- n

then become (replacement specified)
else send (communicalion) to buffer

Finally, we specify the code for a customer to process overdrafts. This

customer, called overdraft-process rcceives the reply to the withdrawal re-

. - S e .
v e ERL L
et K A R
P AR
RN A

quest sent to the savings account as a result of the overdraft. The identifier
self is bound, as always, to the mail address of the actor itself (i.e., the actor

whose behavior has been defined using the given behavior definition). The

A.,.. .
. AUNENEN
", .

E .

response from the savings account may be a withdrawn, deposited, or com-

RS vie
PR AT Oy

plaint message. The identifier prozy in the code of the insensitive account

i represents the mail address of the over-draft process. The proxy is used to
authenticate the sender of any become message targeted to the insensitive

5 actor.

overdraft-proc (customer , my-checking , my-savings ,

checking-balance) [(savings-response))

send | become , self] to my-checking '—EQZ:'
send [(savings-response)] to customer I:'_:f-_;
if (savings response is withdrawn) :’*
then become new checking-acc (0, my-savings) f‘ﬂ’}

else become new checking-acc(checking-balance , my-savings) _t::,‘;:

1)

Wy

L1y

AP

ok

.

e Foa e e
‘,/'- ey 00 o "- _" .
. ot e

3,

P A

.....................................
..

- - - -
- ... ‘.‘...'b. LAY |.-.l. . !. - ‘-'.-‘-E-Q.l‘.
""" ERRIIP S S R T IS S, R S

ey
.".I
aon

L 2 g
)

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 81

4.3 Sequential Composition

In the syntax of our kernel language, we did not provide any notation for
sequential composition of commands. The omission was quite intentional.
Although sequential composition is primitive to scquential machines, in
the context ol actors it is generally unnecessary. Recall that the primitive
actor carries out only three sorts of actions: namely, sending communica-
tions, creating actors, and specifying a replacement behavior. The order
of these actions is immaterial because there is no changing local state af-
fecting these actions. Furthermore, the order in which two communications
are sent is irrelevant because, even if such an order was specified, it would
not necessarily correspond to the order in which the communications were
subsequently received.4

There are some contexts in which the order of évaluatioﬁ of expressions
seems sequential even in the kernel of SAL. The two obvious places are
conditional ezpressions and let ezpressions. A conditional erpression must

be evaluated before any of the commands in the body can be executed.

Such evaluation can not be done at compile time. However, the entire con-
ditional command can be executed concurrently with any other commands
at the same level. One can think of each command as an actor to which
a communication is sent with the current bindings of the identifiers. The
“command actor” in turn executes itself in the environment provided by

the communication.

4Unless the two communications are sent to the same target, there may not be a unique

ordering to their arrival. Sec the discussion in Scction 2.2.

AN it AL e aan ane Al At d s

3
LN

'- ". fl' ‘I.". .' *

{3

. g— PrgTR—— — B vl MR ade Mgl aathosse Y

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 82

A let command, unless it is binding a new expression, is nothing more -
than an abbreviation that can be removed by the compiler if desired. A
translalor can substitute the expression for the identifier whereever the -
identifier is used (in the scope of the let binding). :

A more interesting case is that of let commands binding new ezpressions. ::.
New expression bindings serve as abbreviations for behaviors instead of val- -
ues. However, the behavior associated with an identifier is not necessarily
constant. In an abstract sense, the identifier (in its scope of use) always
denotes the same object. For example, a bank account refers to the same .

bank account even though the behavior of the bank account is a function

O I

of the balance in it.

5 %

b
b
= Let bindings have another characteristic: They may be mutually re-

cursive since concurrently created actors may know of each other. The -

question arises in what sense the behavior of an actor depends upon the

other actors. The only requirement is that concurrently created actors may

"
[P I
3

know each others mail address. This in turn means that the mail addresses

. u',;"n'.a"' A N

of each of the actors should be known before any of the actors are actu-

ally created (since the behavior of each is dependent on other actors’ mail

e
LR R A A)

« 70

addresses). The operational significance of this is quite straight-forward.

Voa,

Not withstanding their absence in the kernel of our actor language,
sequential composition of commands can be meaningful as a structural

representation of certain patterns of computations. Sequential composition

J Y Y Nl
P L OPAE L
' ettt
oy e e .

in these cases is a result of causal relations between events. For example,

consider the commands S; and S; below:

.....

....................

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 83

S, = send [callg[z] |tof
Sy

send [call g [y] |tof

then the sequential composition of S| with S; has a very different meaning
than the concurrent composition of the two commands because the effect of
accepting communication [z] may be to change the actor ¢’s subsequent be-
havior. Thus sequential composition can result in only some of the possible
order.of events inherent in the concurrent composition.

Sequential composition of the above kind is also implemented using
customers. The command S = S,; S, is executed concurrently with other
commands at the same level. To execute S, the actions implied by the
command S, are executed, including the creation 9f a customer to handle
the reply from g. When this customer receives the reply from g, it carries
out the other actions implied by S; as well executing S,.

Notice however that if S; and S, were commands to simply send com-
munications to g, then no mechanism for any sequential composition of the
two actions implied would be definable in our kernel language. Nothing
signals the end of any action at an actor other than the causal relations
in the events. For example, causality requires that the actions of an actor
must follow the event that creates it. The conclusion to be drawn is that
concurrent composition is intrinsic in a fundamental and elemental fashion
to actor systems. Any sequentiality is built out of the underlying concur-
rency and is an emergent property of the causal dependencies of events in

the course of the evolution of an actor system.

™
)

By

g T T T ey T e ¥ e Wy Y, FLOTELLY LT
i N A A S NI ™ e e P R St e b S o A S S NN . R N FoeLee T . . .

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 84

P

4.4 Delayed and Eager Evaluation

:
In this section, we will develop the model of actors in which all expressions, y
:Z commands and communications are themselves considered to be actors. We
:‘.l’_ will call this model of actors the universe of actors model. The universe
i of actors model is uselul for defining a language that is the actor equiva- -
lent of a purely expressional language. Specifically, the universe of actors y
['._‘: model permits an easy (and efficient) implementation of the various expres- A
L sion evaluation mechanisms, such as delayed and eager evaluation, using h
message-passing. c
Computation in actor systems is initiated by sending communications to :
actors that are receptionists. A single behavior definition in fact represents ‘
a specification of a system of actors with one of them as the receptionist t
for the system; the behavior of this receptionist is to execute a sequence of
commands concurrently. We can consider each command to be an actor and
the receptionist, upon accepting a communication, sends each command a .
T message to execute itself with the current environment specified by the -
E'.j communication sent. The command will in turn send communications to
2 expressions and create customers to process the replies. This process must, ~'
naturally, be bottomed out at some point by actors which do not send any X
“requests” to other actors but simply produce “replies.” Hence, we need a
special kind of actor, called a primitive actor, with the characteristic that
some of these primitive actors need not (always) rely on more message- -

passing to process an incoming communication. [Furthermore, primitive .

v ..
et

actors have a pre-defined behavior which never changes (i.e., the behavior

R

PP SR ST M |

|

LT T et Wt et T T Y e e e e T e e . L T Tt ettt et e e
g A AT - 4’"". P A T T I I S N R TP R . L S T, P P, P, S
. - . . N

AD-A157 917 ACTORS: A MODEL OF CONCURRENT COHPUTRTION_IN) 2/3
: DISTRIBUTED SYSTEMS(U> MASSACHUSETTS INST OF TECH
CAMBRIDGE ARTIFICIAL lNTE%LIGENCE LAB G A AGHA JUN 85
F/G 97/

UNCLASSIFIED RI-TR-844 NOG@@14-86-C-0850: NL

|

PSSt S eAR BRI 4 A a7 AT N T TREYY 3 T RAEOEW

AR R A :-'.\'Ei
v
v
'
i
15
‘E

A

ALY SRS N

P

RN R T N T

_‘- msnm————
w.._ o “ —
§ " -I- vlv
4 o ll= e
a -

. :

FEERER R

EEER

e
bl
5!

ol
sl
ol
zal
=

Pt
LUVHO 1S3L NOLLOS3M AODCUOM
SONVONVLS 40 NV3HNA TVNOILYN

e ————
N

L
Fean

"V
S At

g ~ :
4 j

.8

¥

i

e

-

N S S LY e e

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 85

is unserialized). Which actors are defined as primitive depends on the

particular actor system.

4.4.1 Primitive Actors

Primitive actors are used in order to “bottom-out” a computation.> Hence,
the set of primitive actors must include the primitive data values and the
basic operations on them. In particular, simple data objects such as inte-
gers, booleans and strings must be considered primitive. When an integer
is sent a message to “evaluate” itself, it simply replies with itself. To
carry out any computation, primitive operations, such as addition, must be
pre-defined. There are various mechanisms by which a consistent model,
incorporating primitive operations, can be developed: one such scheme is
to also define operations such as addition to be primitive actors.

Our bias, however, is to encapsulate data values and the operations valid
on the data into uniform objects. Hence, we define each integer as an actor
which may be sent a request to add itself to another integer. The integer
would then reply with the sum of the two integers. In fact an integer, n may
be sent a request to add itself an arbitrary integer expression, e. In this
case one must also send the local environment (which provides the bindings
for the identifiers in €). The bindings of the identifiers will, of course, be
primitive actors. One way to understand this notion is to notice that the

expression e is really equivalent to call e [env] where env is the environment

STheriault [83] used the term rock-bottom actors to describe these actors and the material

on primitive actors closcly follows his implementation in Act®.

e e

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 86

in which the evaluation of the expression is to be performed. If ¢ is an
integer constant, it will reply with itself and, subsequently, n will reply
with the correct sum. Specifically, the behavior of the expression e + n, in
response to a request to add itself to the expression e in the environment

env, can be described as:

let z = call e [env]
{reply [n + 2]}

If e is not an integer but an integer expression, a call to it must result in an
integer. Thus the meta-circular behavior of the expression, e = ¢; + e3, is
to send evaluate messages to each of the expressions e; and e; and to then
send a message to the first expression (which would now have evaluated to
the primitive actor that corresponds to the value of ¢;) to add itself to the
actor the second expression evaluates to.

Notice that we use integers, and expressions, as though they were iden-
tifiers bound to mail addresses, and, indee’, as actors they are. To under-
stand this concept, consider the relation between the numeral 3 and the
number 3. For our purposes, in the universe of actors model, the identifier
3 is bound to the mail address of the actor 8. Since §is a primitive actor,

its behavior is pre-defined. Furthermore, the behavior of the actor $ never

changes (such a behavior is called an unserialized).

There may be more than one actor § in a program: the identifier 3 is
! completely local to the scope of its use. However, the identifier 3 has been
reserved for a particular functional (unserialized) behavior and may not be

used differently by the programmer. One useful implication of the fixed

¥
:

e W

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 87

behavior of an integer like 3 is that it does not really matter how many 3's
there are in a given actor system, or whether two 3’s in an actor system
refer to the same actor $ or different ones. Ergo, when a communication
contains the actor 9, it is an implementation decision whether to “copy”
the mail address of the actor $ or whether to copy the actor itself: the latter
possibility is useful for maintaining locality of reference in message-passing

for efficiency reasons.® To put it another way, the unserialized nature of

primitive actors implies that there is no theoretical reason to differentiate.

between the expression new 3, and simply 3.

4.4.2 Deiayed Evaluation

In functional programming, delayed evaluation is useful for processing infi-
nite structures by exploring at any given time, some finite segments of the
structure. Using delayed expressions, the evaluation of a function is explic-
itly delayed until another function “resumes” it. Thus, delayed evaluation
is the functional equivalent of co-routines [Henderson 80].

In actor systems, it is not necessary to define delayed evaluation as a
primitive: Since an actor becomes another actor as a result of processing
a task, an actor already represents an infinite structure which unfolds one
step at a time (in response to each communication accepted). Similarly,
co-routines are one particular case of a concurrent control structure; actors

allow one to define arbitrary concurrent control structures. Each control

8 Therc is no notion of copying actors in the actor model. What we mcan is create a new

actor with the behavior identical to the current hehavior of the (old) actor.

CIIAPTER 4. A MORE EXPRESSIVE LANGUAGE 88

.
.
.t

.
-
o

30
‘e
!

v

structure defines a graph of activations of processes and, as such, every

'. ‘l " .l .‘
7

N control structure can be represented as a pattern of message-passing [He-

witt 77]. The actor model allows dynamically evolving patterns of message-

passing. Static control structures, such as co-routines, are a special (de-
generate) case of the dynamic structures.
As the above discussion suggests, dclayed evaluation is a syntactic ex- |
o tension to an actor language and not a semantic one. We define delayed

expressions in order to make our purely expression oriented extension of

SAL more expressive. The construct does not add any expressive power to
the language.
:'_f The expression delay e denotes the mail address of the expression e as

opposed to the actual value of e. Recall that the expression e is equivalent

to call e[env] where an expression denotes the mail address at which the

expression resides (see the discussion about the universe of actors model in

P the previous section). -
For purposes of the discussion below, we assume that the environment :j
- is sent to any expression receiving a request. Now we have to decide what is

meant by expressions which contain delayed expressions as subexpressions.

For example, the expression : o

: € = €3 * de|ay es

is a product of an arithmetic expression and a delayed (arithmetic) expres-
sion. When e; has been evaluated it receives the request [+, delay e3], where
delay e; represents the mail address of the expression e;. Assume e; has

evaluated to some integer n. The only feasible way of handling the expres-

‘CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 89

sion e; then is to “return” (i.e., to reply with) its current local state, which
will be cquivalent to the expression n # e;. That is exactly what is done,
except that the mail address of the expression e; is returned. e; has now
become an actor behaviorally equivalent to the expression n * e;, and not

the value of the expression.

4.4.3 Representing Infinite Structures

The delayed expressions we have defined so far do not really represent
potentially infinite structures, because the expressions they define are not ?;j
recursive. However, our def exp behavior definitions already provide for]

such recursive structures. In this section we explore this analogy with the

help of a detailed example. We will present an example using a functional -1
programming notation and using actors. Two different actor systems are "
defined with equivalent observable behavior; the second system uses actors
that change their behavior. Furthermore, the second actor system does

not use the list construction and separation operators. Thus the flavor

of the two actor systems is quite different even though they have similar

“r

behaviors.

N
* »

=

The Example in Functional Programming

The purpose of the following example is to define some functions which
evaluate a given number of initial elements of an infinite list. The notation

uses a functional form for the cons operation but not for the car or cdr. All

-

, .JA[L

g SRS

functions are taken from Henderson [80]. Consider, the delayed expression =

LRy RO

.
ala

-
-
-."
~
~
-—

................

-‘ ‘. l. ’. S
SRR s it I:t.‘i:'}.\r:'

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 90

in the function integersfrom(n) below:
integersfrom(n) = cons(n , delay integersfrom(n + 1))

integersfrom(n) is an example of such an infinite list, namely the list of
all the integers greater than n. This list of may be evaluated only partially
at any given point in time. The function first(t,z) defined below gives the
first k arguments for an infinite list z whose cdr has been dclayed. (In the

functional program, one has to explicitly force the evaluation of a delayed

list.)

first(¢,z) = if =0 then NIL
else cons (car z , first (¢ — 1, force cdr z))

Now we define two more functions which can be used to return the cumu-
lative sum of all the elements of a list up to some itk element. The function
sums(a, z) returns a list whose ith element is the sum of the first ¢ elements
of the list z and the integer a. Finally, the function firstsums(k) uses the
functions defined so far to return the list of initial sums of the first ¢ positive

integers.

sums (a,z) = cons (a + carz, delay(sums (a + carz , force cdr z))
firstsums (k) = first (k , sums(0,¢ntegersfrom(1)))
A System of Unserialized Actors

Let us now define an actor system which produces the same hehavior. We

will do this in two different ways. First, we define a system of actors all

.
94

2.0

..‘.‘-"'.Jlfny'. BN
P Y L) L L
aala’ o]

s e N
RCRR)
.

el

XA

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 91

of whom have unserialized behaviors (i.e., they are always replaced by an

identically behaving actor). We therefore give their definitions without any

become commands in them. (Recall the default that an actor is replaced)
by an identically behaving actor if no become is found in its code). We will
subsequently define a system of actors which uses serialized behaviors when

appropriate. The idea bchind defining two systems is to show the relation

¢
.
.
;

between actor creation and actor replacement. The systems also show the

aa

relation between delay and actor creation.

Assume that the operations cons, car and cdr exist and are defined
on actors representing lists. cons is sent the mail address of two actors
and returns a list of the two mail addresses. It is important to note the
equivalence of the mail address of a primitive actor and the actor itself.
There are two possibilities for a list z: it may consist of a primitive actor
(cquivalently the mail address of a primitive actor) or it can be the mail
address of an arbitrary list. car z equals z if z is a primitive actor, or "":-
equivalently the mail address of a primitive actor, otherwise car z is the
mail address of the first element of the list. c¢dr z is NIL if z is a primitive
actor, and otherwise returns a mail address corresponding to the rest of the -
list. -'.:

All the actors whose behavior is given by code below are expressions.
We will not bother to enclose the definitions in def exp - - - end def since the
N definitions are all rather brief. There is no need delay or force operators:

a delayed list is represented by the mail address of an actor representing -

that list.

9
!
N
2
o
CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 92
re
: The first function we define is integersfrom(n). The behavior of an
:L'\- integersfrom(n) actor is that it responds to an evaluate request (i.e., a

request of the form |]) by replying with a list whose car is the integer n and =

whose cdr is the mail address of an actor with the behavior integersfrom(n +

1)]
integersfrom(n) [] = reply [cons (n, new integersfrom(n + 1))] #

The behavior of an actor whose behavior is given by first () is as follows:
when it is sent a request [z, z], where ¢ is an non-negative integer and z is _f
an arbitrary list, it replies with the first 7 elements of the list. We assume 4

that the list z is sufficiently long to have 1 elements. J

first() [i,z] = if =0 then reply [NIL |
else reply [cons (car z , call self [¢ — 1, cdr)]

Finally, we give the behavior definitions for the two remaining actors.

firstsums() defines an actor whose behavior is to give a finite list whose ith

element is the sum of the first ¢ non-negative integers. The length of the list

of sums in the reply is specified in the communication received. In order

AR PRI
PR O)

to create a system which returns the list of initial sums of non-negative

P
R
'O‘j" .

integers, we need to create only a firstsums() actor; all the other actors

b ta.
'S

will be created by this actor. The actor created will always be the sole
receptionist for such a system since no mail address is ever communicated

to the outside.

,
SN

sums(a,z) [] = let b=a+ carz
{ reply [cons (b,new sums(b,cdr z))] }

'.‘h'.' ALY ' .".,'.,".'.a._n' .
RN n“) " AR

«
2
o
o

|
e

T " v g DARORAE RSt fe St s Anthrat Mad A yad Sl Ai At gt Sl B L s At A AR A g et

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE . 93

firstsums() | k] = let p = new integersfrom(1)
and s = new sums(0, p)
and f = new first()

{ reply|call f [k,s]] }

The fact that all the behaviors are unserialized implies that it is possible
to use the same actors for different requests. Thus if an actor with behavior '.':i
first() exists, it doesn’t matter if a communication is sent to the same ‘
actor or to a new actor created with the behavior first(). The converse
of this property is that an actor with unserialized behavior can never be a o
history-sensitive shared object. This same limitation is applicable to purely

functional programs.

A Systemn With Serialized Actors

We now attack the same problem with actors that may change their local
state: i.e., actors that may be replaced by actors whose behavior is different
than their own. The point of defining this system is to show the relation
between actor creation and replacement. The example also illustrates the
similarity between a delayed expression and a serialized actor.

It should be noted that actors are in fact more general than expres-
sions in functional programming. For one, actors, unlike expressions, may
represent (history-sensitive) shared objects. For example, a bank account
written as a function which returns a partly delayed expression will have

returned an argument purely local to the caller. This means that such a

A . T P P

CHAPTER 4. A MORE EXPRESSIVE LANGUAGE 94

bank account can not be shared between different users (or even between
the bank manager and the account owner!). In dataflow architectures,
the problem of sharing is addressed by assuming a special merge clement.
However dataflow elements have a static topology (sce the discussion in

chapter 2).

The definitions below do not use cons, car, and cdr operations. Instead
we simply construct and bind the communication lists. The behavior def-

inition of integersfrom(n) is that it accepts a simple evaluate m